论文阅读笔记
文章平均质量分 95
Blue琰琰
CS博士在读
展开
-
AAAI 2023|跨域命名实体识别的域适应依赖关系解析
近年来,许多研究人员利用依赖树中的结构信息来改进命名实体识别 (NER)。他们的大多数方法都采用依赖树标签作为 NER 模型训练的输入特征(现有的NER改进方法)。然而,大多数NER语料库中并未固有地提供这种依赖信息,这使得这些方法在实践中的可用性较低(挑战)。为了有效挖掘词依赖知识的潜力,在跨领域NER上多任务学习成功的推动下,我们研究了一种将跨领域依赖解析(DP)作为辅助学习任务的新型NER学习方法。原创 2023-11-22 11:27:14 · 391 阅读 · 0 评论 -
AAAI 2023|嵌套命名实体识别为构建本地超图
命名实体识别是自然语言处理中的一项基本任务(研究领域)。基于平面命名实体识别的序列标注范式,已经发展了多种方法来处理嵌套结构。但是,它们要么需要固定的识别顺序,要么引入复杂的超图(挑战)。为了解决这个问题,我们提出了一种名为本地超图生成器网络(LHBN)的新模型,该模型可以构建多个更简单的本地超图来捕获命名实体,而不是单个复杂的全尺寸超图。所提出的模型具有三个主要属性:(1)共享边界的命名实体被捕获在同一个局部超图中。(2)通过构建局部超图来增强边界信息。原创 2023-11-17 11:14:30 · 634 阅读 · 0 评论 -
CVPR 2022|用于连续语义分割的表示补偿网络
在这项工作中,我们研究了连续语义分割问题,该问题要求深度神经网络在没有灾难性遗忘的情况下不断地融入新的类别(研究领域及挑战)。我们提出使用一种结构化的再参数化机制,即表示补偿( RC )模块,来解耦新旧知识的表示学习。RC模块由2个动态演化的分支组成,其中1个为冻结分支,1个为可训练分支。此外,我们在空间和通道两个维度上设计了池化立方体知识蒸馏策略,以进一步增强模型的可塑性和稳定性(模型结构)。我们在两个具有挑战性的连续语义分割场景上进行了实验,分别是连续类分割和连续域分割。原创 2023-11-15 15:07:47 · 248 阅读 · 0 评论 -
ICCV workshop 2019| 用于语义分割的增量学习技术
深度学习架构在需要增量学习新任务时,由于灾难性的遗忘,其性能出现了严重下降(挑战)。当代的增量学习框架专注于图像分类和对象检测,而在这项工作中,我们正式引入了语义分割的增量学习问题,其中考虑了逐像素标记(创新点)。为了解决这一任务,我们建议提取先前模型的知识以保留关于先前学习的类的信息,同时更新当前模型以学习新的类。我们提出了对输出logits和中间特性都有效的各种方法。与最近的一些框架相反,我们不存储来自先前学习的类的任何图像,并且只需要最后一个模型来保持这些类的高精度。原创 2023-11-08 21:05:19 · 395 阅读 · 0 评论 -
arxiv 2023| 思维链推理研究综述:进展、前沿与未来
思维链推理是人类智能的一个基本认知过程,在人工智能和自然语言处理领域受到了极大的关注。然而,仍然缺乏对这一领域的全面调查。为此,我们迈出了第一步,对这一研究领域进行了细致而广泛的调查。我们用思维X来指广义的思维链。详细地我们根据方法的分类法系统地组织了当前的研究,包括XoT构建、XoT结构变体和增强的XoT。此外,我们还介绍了XoT的前沿应用,包括规划、工具使用和蒸馏。此外,我们还应对了挑战,并讨论了一些未来的方向,包括忠实、多模态和理论。我们希望这项调查能为寻求思维链领域创新的研究人员提供宝贵的资源。原创 2023-11-01 19:09:25 · 2280 阅读 · 0 评论 -
【论文阅读笔记】【关系提取】An Improved Neural Baseline for Temporal Relation Extraction
An Improved Neural Baseline for Temporal Relation Extraction此论文为关系提取领域,以下的阅读笔记为作者的文献翻译及本人的理解,如有错误请提出来。摘要确定事件之间的时间关系(例如之前或之后)已经成为具有挑战性的自然语言理解任务,部分原因是由于难以生成大量高质量的训练数据。因此,神经方法尚未被广泛使用,或仅显示出中等程度的改进。本文提出了一种新的神经系统,在两个基准数据集上,该系统的准确度绝对比以前的最佳系统提高了10%(错误减少了25%)。所原创 2020-11-20 21:40:54 · 1574 阅读 · 2 评论