决策树——三种基本算法

前言

决策树算法学习

一、ID3

ID3算法使用信息增益来划分节点,信息增益越大说明使用该属性划分获得的纯度越高。
在这里插入图片描述
ID3的不足:信息增益准则对取值较多的属性所有偏好!
例如:使用身份证号对全国人民进行分类,显然这个属性的取值的个数为全国人口总数,每一个人就是一个类别,信息熵为0,信息增益最大。更加直观一点就是,信息增益的本质是通过选择当前属性,使得当前节点的纯度最大(即样本尽可能都属于同一类)。**当样本总数一定的情况下,属性取值越多,那么每个取值下的样本数量越少,纯度越大。**从信息熵的角度出发就是当类别越多,不确定性越大,纯度越低。

案例

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

二、C4.5

C4.5算法选择信息增益率作为属性划分的条件,信息增益率越大越好
在这里插入图片描述
C4.5算法对可取值数目较少的属性有所偏好,故C4.5算法采用一个启发式的思想,先从候选划分属性中找出信息增益高于平均水平的属性,在从中选择增益率最高

三、CART

cart算法采用基尼系数对属性进行划分,基尼系数越小越好。
在这里插入图片描述

案例

参考:基尼系数案例

四、预剪枝和后剪枝

预剪枝基于贪心,虽然能节省训练时间和防止过拟合,但是有欠拟合的风险。
后剪枝自底向上进行判断,虽然有着良好的泛化性能,但是训练时间过长。

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
决策树算法是一种广泛应用于分类和回归的机器学习算法,它基于树形结构对样本进行分类或预测。决策树算法的主要思想是通过一系列的判断来对样本进行分类或预测。在决策树中,每个节点表示一个属性或特征,每个分支代表该属性或特征的一个取值,而每个叶子节点代表一个分类或预测结果。 决策树算法的训练过程主要包括以下步骤: 1. 特征选择:根据某种指标(如信息增益或基尼系数)选择最优的特征作为当前节点的分裂属性。 2. 决策树生成:根据选择的特征将数据集分成若干个子集,并递归地生成决策树。 3. 剪枝:通过剪枝操作来提高决策树的泛化性能。 决策树算法的优点包括易于理解和解释、计算复杂度较低、对缺失值不敏感等。但是,决策树算法也存在一些缺点,如容易出现过拟合、对离散数据敏感等。 下面是一个决策树算法的案例:假设我们要根据一个人的年龄、性别、教育程度和职业预测其收入水平(高于或低于50K)。首先,我们需要将这些特征进行编码,将其转换为数值型数据。然后,我们可以使用决策树算法对这些数据进行训练,并生成一个决策树模型。最后,我们可以使用该模型对新的数据进行分类或预测。例如,根据一个人的年龄、性别、教育程度和职业,我们可以使用决策树模型预测该人的收入水平。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值