划分数——java

在这里插入图片描述
在这里插入图片描述

在解这道题之前,我们先看一道跟这道题很像的题目:
把m个同样的苹果放在n个同样的盘子里,允许有的盘子空着不放,问有多少种不同的分法?(注:5,1,1和1,1,5是同一种分法)
问题分析:
f(m,n): 表示把m个苹果,放入n个盘子的分配方法总数
1.当m = 0或 n = 1时,只有一种分法
2.当m < n 时,即当苹果数少,盘子过剩时。此时一定有n-m个盘子一直空着,去掉他们对于分配的总数没有影响。
if(m < n) f(m,n) = f(m,m);
3.当 m >= n 时,不同的放法可以分为两类:1.含0的方案数 2.不含0的方案数

  • 含0的方案数:即至少有一个盘子空着,此时f(m,n) = f(m,n-1)
  • 不含0的方案:即所有盘子都有苹果,相当于可以从每个盘子中拿掉一个苹果,不影响不同放法的数目,即f(m,n) = f(m-n,n)

综上,if(m >= n) f(m,n) = f(m,n-1)+f(m-n,n)

下面是详细代码:

import  java.util.*;

public class Main{

	
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		
		int m = sc.nextInt();   //苹果数
	    int n = sc.nextInt();   //盘子数
		System.out.println(func(m,n));
		
	}
	private static int func(int i,int j) {
		if(i == 0 || j == 1) {
			return 1;
		}
		if(i < j) {
			return func(i,i);
		}
		else {
			return func(i,j-1)+func(i-j,j);
		}

	}
}

下面我们分析上面的题目:
划分数的题目的思路跟分苹果的思路差不多,下面我们采用动态规划的解法
dp[i][j]: j的i划分
递推公式:
在这里插入图片描述

import java.util.*;

public class Main{
	
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int n = sc.nextInt();   //物品
		int m = sc.nextInt();   //组数
		int M  = sc.nextInt();
		
		int[][] dp = new int[10001][10001];
		dp[0][0] = 1;
		for(int i = 1;i <= m;i++) {
			for(int j = 0;j <= n;j++) {
				if(j>= i) {
					dp[i][j] = (dp[i-1][j]+dp[i][j-i])%M;
				}
				else {
					dp[i][j] = dp[i-1][j];
				}
			}
		}
		System.out.println(dp[m][n]);
		
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值