- 博客(204)
- 资源 (3)
- 收藏
- 关注
原创 float32和float64的本质区别(类型对深度学习影响以及python的使用)
首先我们需要知道何为bits和bytes?bits:名为位数 bytes:为字节 简单的数就是MB和G的关系!那么8bits=1bytes,下面是各个单位的相互转化!那么float32和float64有什么区别呢?数位的区别 一个在内存中占分别32和64个bits,也就是4bytes或8bytes 数位越高浮点数的精度越高它会影响深度学习计算效率?float64占用的......
2019-05-08 22:03:18 101140 8
原创 使用html+css+layui实现动态表格组件
需求,表格第一列指标可配置通过后端api传进来,表格显示数据以及鼠标触摸后气泡弹出层提示信息都是从后端传过来,实现动态表格的组件!注意需要引用layui组件。
2024-09-06 11:46:58 705
原创 easyUI点击编辑操作实现行编辑,点击取消编辑取消编辑,点击添加实现添加行操作
【代码】easyUI点击编辑操作实现行编辑,点击取消编辑取消编辑,点击添加实现添加行操作。
2024-04-02 16:46:42 955
原创 Layui实现自定义的table列悬停事件并气泡提示信息
使用layui组件实现table的指定列悬停时提示信息,因为layui组件中没有鼠标悬停事件支持,所以需要结合js原生事件来实现这个功能,并结合layui的tips和列的templte属性气泡提示实现效果。
2023-12-13 09:50:53 1568
原创 数字证书实际应用场景
移动设备管理:数字证书可用于管理移动设备,确保只有授权用户可以访问受保护的应用程序和数据。远程访问:企业可以使用数字证书控制远程访问,以确保只有授权人员可以访问敏感数据。电子商务:数字证书可以用于保护在线支付和交易,确保交易的安全性和真实性。电子邮件:数字证书可用于电子邮件签名和加密,以确保邮件的机密性和完整性。网络安全:网站使用数字证书来加密数据传输,防止黑客窃取敏感信息。电子签名:数字证书可以用于电子签名,使签名具有法律效力。这些场景都需要数字证书来确保数据的安全性和真实性。
2023-05-20 23:46:39 1128
原创 使用bert4keras出现的问题(Process finished with exit code -1073741819 (0xC0000005))
另外一个博客说是对应模型文件路径的问题,需要把路径改为据对路径,我试了一下依然没有什么用处,接着有查阅了很多博客依然没有什么可用的解决办法,所以我想这从代码入手亲自找到这个问题,通过pycahrm的debugger调试我终于知道程序强制退出停止的问题位置,但是依然不知道解决办法,但是至少知道了问题点在哪里问题就等于解决了一半了。除此之外我查到了一些博客,有下面几种情况,第一种是说需要把模型文件重新保存一下,但我觉得的不太对 我也没去试。以上就是我今日分享的小tips哈哈哈,希望能够帮助到你~
2023-04-26 19:08:13 901 2
原创 python使用opencv实现识别指定区域的行人
第二点问题是行人识别准确度问题,当前使用Haar的识别器效果还是不好的,我们可以使用yolov5或者MobileNet-SSD模型对行人进行识别效果会更佳,第三个问题是绘制区域的优化,目前是默认矩形区域,实际形形况中可能是非矩形的多边形区域,所以针对这个需要进一步的优化。该程序主要使用python的opencv模块实现,实现流程:首先利用Haar分类器实现行人检测功能,其次利用opencv鼠标事件框选矩形区域,计算行人中心点,判断如果中心点在区域内后,就对行人检测框进行颜色的转变。
2023-04-08 17:57:04 2854 3
原创 Java使用泛型T判断实体类型,执行不同的业务逻辑
定义两个类,分别为学生类和教师类,设置属性id作为编号,使用lombok的@Data生成getter和setter方法,创建共通方法方法private static void print(T entiy),其中表示使用泛型进行编程,否则后续做类型判断会报错,具体案例实现如下。在web开发中,存在这种业务逻辑,不同的Vo实体类,需要调用相同的serviceImpl的update更新方法,这种场景我们可以使用java泛型去更好去解决这个问题,减少不必要相同业务逻辑方法的重复实现开发。
2023-02-24 11:15:57 1592 3
原创 python基于用户画像和协同过滤实现电影推荐系统
1、概要 传统电影推荐系统大多使用协同过滤算法实现电影推荐,主要实现机理是通过用户评分及用户观影历史数据抽象为多维向量利用欧式距离或其他向量计算公式实现推荐,本文中将采用常用的机器学习算法Kmeans聚类算法+协同过滤算法+word2vec搜索推荐模型多模型多维度实现电影推荐系统,系统主要使用python语言进行开发,使用django网站web开发框架实现,数据库使用mysql 2、算法介绍 Kmeans聚类模型通过用户多维度多特征的信息:用户性别,年龄,地域,角色(学生、上班族
2022-12-10 14:47:41 3652 19
原创 python基于OCR深度学习实现商品配料表识别
我就当前热点话题,对食品配料识别进行了研究和实现,目前调研常用的几个开源的OCR识别模型主要有几个如下表所示,简单说一下各个模型的优缺点,paddleocr用起来很方便是国产识别模型(baidu搞得),只需要用python安装对应模块即可,而且识别速度和效果是这几个中最好的(个人感觉),而且可以更换不同级别的模型,例如服务器级别的chinese_ocr_db_crnn_server、和手机端级别的chinese_ocr_db_crnn_mobile等。# 安装paddleOCR。# 安装后创建服务环境。
2022-11-22 18:40:42 2085 1
原创 java 使用bc库封装ASN1结构案例
出除了基本结构还有常用得类型也需要大家了解一下:Extensions、ASN1OctetString、ASN1Integer、ASN1GeneralizedTime、ASN1BitString规律就是一般都是根据下面得结构属性名称加一个ASN1就是这个类型(但是实际中也是需要自己去试)。下面主要是通过BC库,通过一些GM/T国密标准文档去实现ASN1结构封装得案例,来帮助大家封装ASN1结构代码。,他是一个第三方密码算法相关得库,包括国密算法SM2,对称,非对称等等。ENUMERATED // 枚举结构。
2022-10-21 15:57:38 2787
原创 python 使用pyqt5实现了一个汽车配件记录系统
老姐要求做个记录销售汽车配件得的excel,我觉得太麻烦了,身为程序员的我 必须安排一个方便快捷的系统,安排上!环境要求:python3,pyqt5,pandas。
2022-09-21 11:36:42 570
原创 基于机器学习的异常点检测算法
实现UEBA需要基于用户自身行为基线检测特征例如:用户名、登录地点、登录IP、登录时间、登录方式、登录时间段、 基于用户与用户之间行为基线检测特征 用户名、登录频次、常用IP数量、登录时长、是否是活跃用户、操作频次、常用登录地点、密码错误频次,其次根据TCP/UDP层一些数据包进行特征提取,最终通过多模型进行分析预测。我们依旧不去讨论过多模型算法的理论和复杂的公式,主要针对三种算法进行简单的阐述和区别!...
2022-08-18 18:17:19 1046 2
原创 Centos7 搭建JDK/Mysql8/redis/Nginx全套傻瓜指令
# *******************安装基础*******************# rpm -ivh jdk-8u202-linux-x64.rpm# rpm -ivh tools/net-tools-*.rpm# rpm -ivh ntp/*.rpm# ntpdate ntp1.aliyun.com# hwclock -w# rpm -ivh perl/perl-*.rpm# rpm -ivh telnet-0.17-66.el7.x86_64.rpm# **************
2022-08-03 15:59:19 366
原创 这就是为什么选择C语言不用python的原因
c是编译型语言,编译器直接将c的源码编译成机器语言运行,和像python、java这种解释型语言比减少了运行时解释翻译的时间,提高运行效率,其次c语言是没有像java语言的垃圾回收机制的,需要自行释放,降低本身内耗,也会提高其的执行效率。测试结果如下单位是秒,其实结果还是很惊人的,大家可能都知道c语言的执行速度远高于python,但是没想到会快这么多,差不多25倍的差距!编译成功后会在本文件夹下生成.dll动态库文件,我们需要使用python调用动态库文件并使用add求和函数。......
2022-07-28 11:27:00 2925 15
原创 element-vue中使用vue-code-diff,解决对不齐和显示下拉标志问题
代码实现后主要出现两点问题,第一点,左右高低不齐,第二点问题json出现下拉标志的符号,根本原因目前感觉是高亮引入组件版本的问题与当前项目无法兼容,但是无法解决。在element组件中使用vue-code-diff代码比对组件,在本案例中主要是比对json字符串信息,效果图如下所示。通过F12查看需要对其进行穿透处理,把指定的样式修改如下就可以了。目前只能是在此基础上修改css解决两点问题。5、vue-code-diff其他的参设置。4、解决序号不齐和下拉标志解决办法如下。...
2022-07-22 17:10:40 3454
原创 基于SpringBoot集群数据同步功能设计实现
1、概述基于Web集群数据同步功能设计方案,主题功能主要包括三部分同步配置、同步集群、同步记录,通过进行同步配置集群地址、请求超时时间、同步表的配置、同步频率信息管控同步任务。其次通过添加集群实现多集群数据同步,最后通过同步记录实时查看同步的结果。摘要数据同步;集群;Web;2、功能架构图如图为同步服务功能的架构图,服务器A、B、C之间是完全独立,用户通过集群配置添加服务器地址信息实现多主机之间的数据同步功能。集群信息。............
2022-07-19 17:27:24 1452 9
原创 mysql通过sql查询数据库所有表名称及列信息
查询数据库总所有列信息包括表名称、属性、类型、列名等信息。查询数据库中所有列表信息,并自动生成序号。2、查询所有表列信息。
2022-07-18 10:14:47 3544
原创 若依vue-element框架给操作栏或工具栏列添加、隐藏按钮
1、操作栏添加其他按钮,代码 2、效果 3、工具栏添加按钮,代码示例4、隐藏按钮添加 optShow: { add: false, edit: true, del: true, download: false, reset: true }
2022-07-14 13:59:20 4516
原创 【深度学习】利用深度学习监控女朋友的微信聊天?
效果1、概要 利用深度学习模型Seq2Seq模型搭建拼音转中文模型,利用python键盘监控事件模块PyHook3监控女朋友的发送的拼音数据并发送给模型进行中文预测存储到本地日志中。2、结构 使用咱们csdn的Centos云主机搭建,Seq2Seq模型训练一个拼音转中文的model,其实就类似于搜狗输入法的软件,通过键盘监听事件,监听特定的微信的服务窗口,获取你女朋友的聊天输入拼音数据存储到队列中,Monitor从队列获取拼音数据,发送HTTP/GET请求给云服务拼音转中文的模型
2022-06-19 15:27:06 3079 9
原创 基于K-means的用户画像聚类模型
一、概述使用K-means进行用户聚类划分主要的目的是实现用户画像的电影推荐系统,该推荐包括两部分,第一部分通过协同过滤实现电影推荐 ,第二部分,构建用户画像实现电影推荐,实现通过静态属性实现:用户性别,年龄,地域,角色(学生、上班族、待业)、地域、婚姻状态,使用聚类(K-mens)算法对人群进行划分,实现相同人群的电影推荐,其次动态属性:通过记录用户行为数据,搜索记录使用word2vec模型实现相似搜索关键词推荐影片。(推荐系统我后续会进行讲解)文中使用语言为pyt......
2022-05-15 11:16:33 6317 22
原创 js如何获取集合对象中某元素列表
1、集合样式如下所示:2、我们的需求是,如何只获取所有集合的id列表,如下图:3、解决办法使用map函数即可,arr就是我们的集合数据:arr.map(user => { return user.id }4、其他常用遍历的函数还有find、filterfind:可以寻找集合中符合条件的对象filter:可以过滤出符合我们条件的对象...
2022-05-07 11:12:32 3398
原创 如何度过大学四年(计算机专业)
第一阶段,了解阶段(大一 ——> 大二上)1、这个阶段就是尽量理解书上的理论知识、数据结构、算法原理,这个过程可能会很艰苦,但需要坚持。而且老师经常对我们说,学好基础学好基础,为什么要学好基础?我个人觉得,在学习技术过程中,不光是要有经验的积累同时要有坚实的基础,而且在面试中、底层的理解和对程序调优是有帮助的,因为在程序设计过程中,不光要把功能实现,还要考虑程序执行效率问题。案例:mysql的innodb存储引擎底层是由B+Tree实现,java的HashMap底层实现红黑树+链表图像
2022-03-29 10:57:32 1658
原创 python使用mediapiple+opencv识别视频人脸
1、安装pip install mediapipe2、代码实现# -*- coding: utf-8 -*-""" @Time : 2022/3/18 14:43@Author : liwei@Description: """import cv2import mediapipe as mpmp_drawing = mp.solutions.drawing_utilsmp_face_mesh = mp.solutions.face_meshmp_face_dete
2022-03-23 13:53:08 4139
原创 基础-什么是面向过程和面向对象
1、面向过程将要解决的问题流程顺序化,按照流程和顺序一步一步,自顶而下的进行编程,它是一种编程模式,典型的面向过程的语言就是c语言。2、面向对象将解决的问题进行分解抽象化,将属性和动作封装成对象,不同对象之间进行组合调用解决问题。典型的面向对象编程就是java、python语言。...
2022-03-10 12:23:03 1154
原创 关于若依框架在Linux环境下获取验证码缓慢问题(hutool工具产生UUID速度慢的问题解决)
UUID hutool secureRandom 若依 熵源不足时阻塞问题
2022-03-10 11:08:31 2907 2
原创 游览器打开摄像头案例
<!doctype html><html lang="en"><head> <title>js调用摄像头拍照上传图片</title> <meta charset="utf-8"></head><body><button onclick="openMedia()">开启摄像头</button><video id="video" width="500px" .
2022-03-10 10:46:53 165
原创 docker部署Flask项目
1、部署案例这两个博主讲解的部署Flask的项目很详细可以参考搭建自己的项目Flask + Docker 无脑部署新手教程 - 知乎用Docker部署Flask应用_猪逻辑公园-CSDN博客_docker部署flask2、docker部署执行总结# 测试启动flaskgunicorn app:app -c gunicorn.conf.py# docker编译项目docker build -t faceflask:0.1 -f ./Dockerfile .# 测试环境..
2022-03-10 10:29:29 3803
原创 基于LSTM模型实现新闻分类
1、简述LSTM模型LSTM是长短期记忆神经网络,根据论文检索数据大部分应用于分类、机器翻译、情感识别等场景,在文本中,主要使用tensorflow及keras,搭建LSTM模型实现新闻分类案例。(只讨论和实现其模型的应用案例,不去叙述起实现原理)2、 数据处理需要有新闻数据和停用词文档做前期的数据准备工作,使用jieba分词和pandas对初始数据进行预处理工作,数据总量为12000。初始数据集如下图:首先读取停用词列表,其次使用pandas对数据文件读取,使用jieba库对每行数据进
2022-03-01 17:38:42 4127 10
原创 python mutiprocessing threading ThreadPoolExector
1、threading其实并不能做到实际多线程并发,某一刻ta只能有一个线程在执行,但是由于线程之间切换很快,会以为多个线程同时执行。2、mutiprocessing是多进程,ta可以做到并发操作。3、ThreadPoolExector线程池,ta的特别之处就是可以创建指定数量线程池,最大化合理利用资源,而且和threading相比的防御性更好 不容易造成程序崩溃。大家都知道使用线程和进程能够提高程序的执行效率,但是需要注意的是不是所有的程序在使用多线程和多进程都能够有所提高,下面通过数据实验,
2022-02-24 21:00:35 628
原创 基础—io密集型计算和cpu密集型计算
1、io密集型计算主要是网络,磁盘读写,数据库,web应用等操作,io密集型计算时cpu使用率不高。2、cpu密集型计算主要是数学数字计算,例如:计算圆周率,判断素数,视频解码等,cpu密集型计算会耗费大量cpu资源。...
2022-02-24 20:40:06 954
基于yolov3道路红路灯检测识别实验报告
2022-03-24
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人