从后缀自动机到广义后缀自动机——最详细攻略

本文详细介绍了广义后缀自动机的概念、构造方法及其在处理多个字符串子串问题上的应用。从前置知识如字典树和后缀自动机开始,探讨了广义后缀自动机的起源、构造过程、线性时间复杂度的证明,并提供了具体的应用实例,如计算所有字符中不同子串个数和寻找多个字符串间的最长公共子串。
摘要由CSDN通过智能技术生成

广义后缀自动机

前置知识

广义后缀自动机基于下面的知识点

请务必对上述两个知识点非常熟悉之后,再来阅读本文,特别是对于后缀自动机中的后缀链接能够有一定的理解

起源

广义后缀自动机是由刘研绎在其2015 国家队论文《后缀自动机在字典树上的拓展》上提出的一种结构,即将后缀自动机直接建立在字典树上。

大部分可以用后缀自动机处理的字符串的问题均可扩展到 Trie 树上。——刘研绎

约定

参考字符串约定

字符串个数为 k k k 个,即 S 1 , S 2 , S 3 . . . S k S_1, S_2, S_3 ... S_k S1,S2,S3...Sk

约定字典树和广义后缀自动机的根节点为 0 0 0 号节点

概述

后缀自动机 (suffix automaton, SAM) 是用于处理单个字符串的子串问题的强力工具。

而广义后缀自动机 (General Suffix Automaton) 则是将后缀自动机整合到字典树中来解决对于多个字符串的子串问题

常见的伪广义后缀自动机

  1. 通过用特殊符号将多个串直接连接后,再建立 SAM
  2. 对每个串,重复在同一个 SAM 上进行建立,每次建立前,将 last 指针置零

方法1和方法2的实现方式简单,而且在面对题目时通常可以达到和广义后缀自动机一样的正确性。所以在网络上很多人会选择此类写法,例如在后缀自动机一文中最后一个应用,便使用了方法1(原文链接)

但是无论方法1还是方法2,其时间复杂度较为危险

构造广义后缀自动机

根据原论文的描述,应当在多个字符串上先建立字典树,然后在字典树的基础上建立广义后缀自动机。

字典树的使用

首先应对多个串创建一棵字典树,这不是什么难事,如果你已经掌握了前置知识的前提下,可以很快的建立完毕。这里为了统一上下文的代码,给出一个可能的字典树代码。

#define MAXN 2000000
#define CHAR_NUM 30

struct Trie{
   
    int next[MAXN][CHAR_NUM];   // 转移
    int tot;                    // 节点总数:[0, tot)

    void init() {
   
        tot = 1;
    }

    int insertTrie(int cur, int c) {
   
        if (next[cur][c]) return next[cur][c];
        return next[cur][c] = tot++;
    }

    void insert(const string &s) {
   
        int root = 0;
        for (auto ch : s) root = insertTrie(root, ch - 'a');
    }
};

这里我们得到了一棵依赖于 next 数组建立的一棵字典树。

后缀自动机的建立

如果我们把这样一棵树直接认为是一个后缀自动机,则我们可以得到如下结论

  • 对于节点 i ,其 len[i] 和它在字典树中的深度相同
  • 如果我们对字典树进行拓扑排序,我们可以得到一串根据 len 不递减的序列。 B F S BFS BFS 的结果相同

而后缀自动机在建立的过程中,可以视为不断的插入 len 严格递增的值,且插值为 1 1 1。所以我们可以将对字典树进行拓扑排序后的结果做为一个队列,然后按照这个队列的顺序不断地插入到后缀自动机中。

由于在普通后缀自动机上,其前一个节点的 len 值为固定值,即为 last 节点的 len。但是在广义后缀自动机中,插入的队列是一个不严格递增的数列。所以对于每一个值,对于它的 last 应该是已知而且固定的,在字典树上,即为其父亲节点。

由于在字典树中,已经建立了一个近似的后缀自动机,所以只需要对整个字典树的结构进行一定的处理即可转化为广义后缀自动机。我们可以按照前面提出的队列顺序来对整个字典树上的每一个节点进行更新操作。最终我们可以得到广义后缀自动机。

对于每个点的更新操作,我们可以稍微修改一下SAM中的插入操作来得到。

对于整个插入的过程,需要注意的是,由于插入是按照 len 不递减的顺序插入,在进行 c l o n e clone clone 后的数据复制过程中,不可以复制其 len 小于当前 len 的数据。

算法

根据上述的逻辑,可以将整个构建过程描述为如下操作

  1. 将所有字符串插入到字典树中
  2. 从字典树的根节点开始进行 B F S BFS BFS,记录下顺序以及每个节点的父亲节点
  3. 将得到的 B F S BFS BFS 序列按照顺序,对每个节点在原字典树上进行构建,注意不能将 len 小于当前 len 的数据进行操作

对操作次数为线性的证明

由于仅处理 B F S BFS BFS 得到的序列,可以保证字典树上所有节点仅经过一次。
对于最坏情况,考虑字典树本身节点个数最多的情况,即任意两个字符串没有相同的前缀,则节点个数为 ∑ i = 1 k ∣ S i ∣ \sum_{i=1}^{k}|S_i| i=1kSi,即所有的字符串长度之和。
而在后缀自动机的更新操作的复杂度已经在后缀自动机中证明
所以可以证明其最坏复杂度为线性

而通常伪广义后缀自动机的平均复杂度等同于广义后缀自动机的最差复杂度,面对对于大量的字符串时,伪广义后缀自动机的效率远不如标准的广义后缀自动机

实现

对插入函数进行少量必要的修改即可得到所需要的函数

struct GSA{
   
    int len[MAXN];              // 节点长度
    int link[MAXN];             // 后缀链接,link
    int next[MAXN][CHAR_NUM];   // 转移
    int tot;                    // 节点总数:[0, tot)

    int insertSAM(int last, int c) {
   
        int cur = next[last][c]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值