prime 算法解析
package prime;
import java.util.Arrays;
public class PrimAlgorithm {
public static void main(String[] args) {
// 测试看看图是否创建ok
char[] data = new char[] { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
int verxs = data.length;
// 邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
int[][] weight = new int[][] { { 10000, 5, 7, 10000, 10000, 10000, 2 }, { 5, 10000, 10000, 9, 10000, 10000, 3 },
{ 7, 10000, 10000, 10000, 8, 10000, 10000 }, { 10000, 9, 10000, 10000, 10000, 4, 10000 },
{ 10000, 10000, 8, 10000, 10000, 5, 4 }, { 10000, 10000, 10000, 4, 5, 10000, 6 },
{ 2, 3, 10000, 10000, 4, 6, 10000 }, };
// 创建MGraph对象
MGraph graph = new MGraph(verxs);
// 创建一个MinTree对象
MinTree minTree = new MinTree();
minTree.createGraph(graph, verxs, data, weight);
// 输出
minTree.showGraph(graph);
// 测试普利姆算法
minTree.prim(graph, 1);//
}
}
class MinTree {// 创建最小生成树
// 创建图的邻接矩阵
/**
*
* @param graph 图对象
* @param verxs 图对应的顶点个数
* @param data 图的各个顶点的值
* @param weight 图的邻接矩阵
*/
public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
int i, j;
for (i = 0; i < verxs; i++) {// 顶点
graph.data[i] = data[i];
for (j = 0; j < verxs; j++) {
graph.weight[i][j] = weight[i][j];
}
}
}
// 显示图的邻接矩阵
public void showGraph(MGraph graph) {
for (int[] link : graph.weight) {
System.out.println(Arrays.toString(link));
}
}
// 编写prim算法,得到最小生成树
/**
*
* @param graph 图
* @param v 表示从图的第几个顶点开始生成'A'->0 'B'->1...
*/
public void prim(MGraph graph, int v) {
// visited[] 标记结点(顶点)是否被访问过
int visited[] = new int[graph.verxs];
// visited[] 默认元素的值都是0, 表示没有访问过
// for(int i =0; i <graph.verxs; i++) {
// visited[i] = 0;
// }
// 把当前这个结点标记为已访问
visited[v] = 1;
// h1 和 h2 记录两个顶点的下标
int h1 = -1;
int h2 = -1;
int minWeight = 10000; // 将 minWeight 初始成一个大数,后面在遍历过程中,会被替换
for (int k = 1; k < graph.verxs; k++) {// 因为有 graph.verxs顶点,普利姆算法结束后,有 graph.verxs-1边
// 这个是确定每一次生成的子图 ,和哪个结点的距离最近
for (int i = 0; i < graph.verxs; i++) {// i结点表示被访问过的结点
for (int j = 0; j < graph.verxs; j++) {// j结点表示还没有访问过的结点
if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
// 替换minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)
minWeight = graph.weight[i][j];
h1 = i;
h2 = j;
}
}
}
// 找到一条边是最小
System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
// 将当前这个结点标记为已经访问
visited[h2] = 1;
// minWeight 重新设置为最大值 10000
minWeight = 10000;
}
}
}
class MGraph {
int verxs; // 表示图的节点个数
char[] data; // 存放结点数据
int[][] weight;// 存边 就是我们的邻接矩阵
public MGraph(int verxs) {
this.verxs = verxs;
data = new char[verxs];
weight = new int[verxs][verxs];
}
}