leetcode 关于括号的问题(栈/dp)

32. 最长有效括号

题目
在这里插入图片描述
假如只有前半部分代码,"(()" 这个样例都过不了。

class Solution {
public:
    int longestValidParentheses(string s) {
        int l=0,r=0,ans=0;
        for(char c:s){
            if(c=='(') ++l;
            else ++r;
            if(l==r) ans=max(ans,2*l);
            if(l<r) l=r=0;
        }
        l=0,r=0;
        reverse(s.begin(),s.end());
        for(char c:s){
            if(c==')') ++l;
            else ++r;
            if(l==r) ans=max(ans,2*l);
            if(l<r) l=r=0;
        }
        return ans;
    }
};
class Solution {
public:
    //dp[i]: 以i为结尾的最长有效括号
    int longestValidParentheses(string s) {
        int n=s.size();
        int *dp=new int[n];
        if(n==0||n==1) return 0;
        dp[0]=0,dp[1]=(s[0]=='('&&s[1]==')')?2:0;
        for(int i=2;i<n;++i){
            if(s[i]=='(') dp[i]=0;
            else{
                if(s[i-1]=='(') dp[i]=dp[i-2]+2;//(()())()
                else{
                    int k=i-dp[i-1]-1;
                    if(k>=0&&s[k]=='(') dp[i]=dp[i-1]+2+((k>=1)?dp[k-1]:0);//()(((((())))))
                    else dp[i]=0;//)())
                }
            }
        }
        int ans=0;
        for(int i=0;i<n;++i) ans=max(ans,dp[i]);
        return ans;
    }
};

856. 括号的分数

题目
在这里插入图片描述
第一种方法:比如((())()(*)) 只算最里面的括号对答案的权值是1<<l,l是向外的深度.

class Solution {
public:
    //比如(((*))(*)(*)) 只算最里面的括号对答案的权值是1<<l,l是向外的深度.
    int scoreOfParentheses(string s) {
        int l=0,ans=0;
        for(int i=0;i<s.size();++i){
            if(s[i]=='(') ++l;
            else{
                --l;
                if(s[i-1]=='(') ans+=(1<<l);
            }
        }
        return ans;
    }
};

第二种方法:我不太会描述
这题就是 比如((() 栈里面就是0,0,1
每个元素的意思是 这个左括号暂时向右能得到的分数 比如(()() 栈里面就是0,2 因为第2个(向右可以直到(()().
栈里每个元素都是(的意思。(()再来一个)时,栈顶就代表((),栈顶*2就是(()),加上栈顶里面的一个 那是同一级别的.

class Solution {
public:
    int scoreOfParentheses(string s) {
        stack<int>st;
        st.push(0);
        for(char c:s){
            if(c=='(') st.push(0);
            else{
                int y=st.top();st.pop();
                int x=st.top();st.pop();
                st.push(x+max(y<<1,1));
            }
        }
        return st.top();
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值