剑指 Offer 04. 二维数组中的查找
1、 问题描述
在一个 n * m
的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
示例:
现有矩阵 matrix 如下:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5,返回 true。
给定 target = 20,返回 false。
限制:
0 <= n <= 1000
0 <= m <= 1000
https://leetcode-cn.com/problems/er-wei-shu-zu-zhong-de-cha-zhao-lcof/
2、 实例分析
当我们需要解决一个复杂的问题时,一个很有效的办法就是从一个具体的问题入手,通过分析简单具体的例子,试图寻找普遍的规律。针对这个问题,我们不妨也从一个具体的例子入手。下面我们以在题目中给出的数组中查找数字7为例来一步步分析查找的过程。
我们从数组的一个角上选取数字来和要查找的数字做比较。
首先我们选取数组右上角的数字9。由于9大于7,并且9还是第4列的第一个(也是最小的)数字,因此7不可能出现在数字9所在的列。于是我们把这一列从需要考虑的区域内剔除,之后只需要分析剩下的3列(如图(a)所示)。在剩下的矩阵中,位于右上角的数字是8。同样8大于7,因此8所在的列我们也可以剔除。接下来我们只要分析剩下的两列即可(如图(b)所示)。
在由剩余的两列组成的数组中,数字2位于数组的右上角。2小于7,那么要查找的7可能在2的右边,也有可能在2的下边。在前面的步骤中,我们已经发现2右边的列都已经被剔除了,也就是说7不可能出现在2的右边,因此7只有可能出现在2的下边。于是我们把数字2所在的行也剔除,只分析剩下的三行两列数字(如图(c)所示)。在剩下的数字中,数字4位于右上角,和前面一样,我们把数字4所在的行也删除,最后剩下两行两列数字(如图 (d〉所示)。
在剩下的两行两列4个数字中,位于右上角的刚好就是我们要查找的数字7,于是查找过程就可以结束了。
3、 分析总结
总结上述查找的过程,我们发现如下规律:首先选取数组中右上角的数字。如果该数字等于要查找的数字,查找过程结束;如果该数字大于要查找的数字,剔除这个数字所在的列;如果该数字小于要查找的数字,剔除这个数字所在的行。也就是说如果要查找的数字不在数组的右上角,则每一次都在数组的查找范围中剔除一行或者一列,这样每一步都可以缩小查找的范围,直到找到要查找的数字,或者查找范围为空。
4、python实现
class Solution:
def Find(self, target, array):
rows = len(array) # 行长度
cols = len(array[0]) # 列长度
i = 0
j = cols-1 # 从右上角往左下查起
while i < rows and j>=0:
if target == array[i][j]: # 查找到了返回True
return True
if target < array[i][j]: # 待查数小于数组元素值向左移动
j -=1
if target > array[i][j]:# 待查数大于数组元素值向下移动
i +=1
return False
array =[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
target = 20
S = Solution()
print(S.Find(target,array))