假设有如图所示的一棵二叉树,我们分别对其前序、中序、后序以及层序进行非递归遍历。
- 前提:二叉树采用孩子表示法
class Node {
Node left = null;//指向左子树
Node right = null;//只指向右子树
int val;
public Node(int val){
this.val=val;
}
}
① 前 序 非 递 归 :根→ 左子树 → 右子树
【方法1】
-
思路分析: 借助栈“ 先进后出 ”的特性。 (与层序遍历相似)
1.空树---->直接返回 2.非空--->让根先入栈 3.如果队列栈不为空,循环执行以”下操作<一 a.取栈顶元素---cur.peek() b.遍历该该元素 c.删除栈顶元素 d.如果当前节点有右子树,将右子树入栈 e.如果当前节点有左子树,将左子树入栈
代码如下:
public void preOrder1(){
if (root == null) {
return;
}
Stack<Node> stack = new Stack<>();
stack.push(root);
System.out.println();
System.out.print("非递归前序遍历1:");
while (!stack.empty()){
Node cur = stack.peek();
System.out.print(cur.val+ " ");
stack.pop();
if(cur.right!=null){
stack.push(cur.right);
}
if(cur.left!=null){
stack.push(cur.left);
}
}
System.out.println();
}
【方法2】
- 思路分析:沿着根的左子树向下遍历
1、根左右:根入栈 栈不为空 删除栈顶元素
2、顺着跟沿左子树向下遍历 遇到右子树 右子树保存入栈
3、当左边遍历完 cur=stack.peek 从栈顶元素开始又想左遍历
1
/ \
2 5
/ \ / \
3 4 6 7
【解释说明】
- 先顺着根的左向下遍历, 根的右子树5入栈 ,然后2的右子树4入栈; 123遍历完后取栈顶元素4遍历, 4没有左子树;然后取栈顶元素5 遍历 5 6 ; 把7保存到栈 最后遍历7。
代码如下:
public void preOrder2(){
if (root == null) {
return;
}
Stack<Node> stack = new Stack<>();
stack.push(root);
System.out.print("非递归前序遍历2:");
while (!stack.empty()) {
Node cur = stack.peek();//获取栈顶元素(保存的右子树节点)
stack.pop();
while (cur!=null){
//顺着cur左侧一直向下遍历
System.out.print(cur.val + " ");
//将右子树保存起来
if(cur.right!=null){
stack.push(cur.right);
}
cur=cur.left;
}
}
}
② 中 序 非 递 归 :左子树 → 根 → 右子树
- 思路分析: 后递归的先退出----栈
(1)、 先找到以root为根的二叉树中最左侧的节点,并保存所经路径中所有的节点 Node cur = root:
while(cur){
s.push(cur);
cur=cur -> left;
}
(2) cur为空:cur对应的树已遍历完
获取栈顶元素x,此时x的左子树为空,可认为x的左子树已遍历结束;
遍历当前根节点:
cur = s.peek();
sout(cur.val);
s.pop();
(3) 遍历cur的右子树:
null----不处理
非空 cur=cur.right
不管cur的右子树是否存在,将其当成一棵新的二叉树遍历。
代码如下:
public void inOrderNor() {
if (root == null) {
return;
}
Node cur = root;
Stack<Node> stack = new Stack<>();
System.out.println();
System.out.print("非递归中序序遍历:");
while (cur!=null||!stack.empty()){
//找以root为根的二叉树最左侧的节点,并保存到所经路径中所有节点----栈
while (cur!=null){
stack.push(cur);
cur=cur.left;
}
//cur为空,认为该树已遍历完
//可以遍历cur的根节点,cur的根节点次数在栈顶
cur = stack.peek();
System.out.print(cur.val+" ");
stack.pop();
//以cur为根的二叉树:左子树已经遍历完,根节点已经遍历完,剩余右子树没有遍历
cur=cur.right;
}
}
③ 后 序 非 递 归 :左子树 → 右子树 → 根
- 思路分析:
(1)找到以cur为根节点的二叉树最左侧的节点,并保存所经路径中的所有节点;
while(cur){
s.push(cur);
cur=cur -> left;
}
(2) 获取栈顶元素----获取子树的根节点
Node top = s.peek();
(3) 遍历右子树
- 【注意】:为了防止出现死循环问题,我们必须要设置一个标志,来判断top的右子树是否已经遍历过(如果没有此操作,4的右子树6将会一直循环)
代码如下:
public void postOrderNor() {
if(root==null){
return;
}
System.out.println();
System.out.print("非递归后序遍历:");
Stack<Node> s = new Stack<>();
Node cur = root;
Node flag = null;//标记刚刚遍历过的节点
while (cur!=null || !s.empty()){
// 找以cur为根的二叉树最左侧的节点,并保存到所经路径中所有节点----栈
while (cur!=null){
s.push(cur);
cur=cur.left;
}
//获取cur子数的根
Node top = s.peek();
//top的右子树为空 || top的右子树已经遍历完成 (4的右子树6已经遍历,避免重复循环)
if(top.right==null || top.right==flag){
System.out.print(top.val + " ");
flag=top;
s.pop();
}else{
cur=top.right;
}
}
}
④ 层序遍历 :1 2 4 3 5 6
-
思路分析 : 【队列】
1.空树---->直接返回
2.非空—>让根先入队列
3.如果队列不为空,循环执行以下操作:
(1)、去队头元素
(2)、遍历该节点
(3)、如果当前节点有左子树,将左子树入队列
(4)、如果当前节点有右子树,将右子树入队列
代码如下:
private void ceng(Node root){
if(root == null){
return;
}
Queue<Node> queue = new LinkedList<>() ;
queue.offer(root);
while (!queue.isEmpty()){
Node cur = queue.poll();
System.out.print(cur.val+" ");
if(cur.left!=null){
queue.offer(cur.left);
}
if(cur.right!=null){
queue.offer(cur.right);
}
}
}
//一般情况下,树的根节点是不能随便告诉去其他
人的,参数能不传递就尽量不传递
public void ceng(){
System.out.print("层序遍历:");
ceng(root);
}