数据结构:二叉树的非递归遍历--详细分析与实现

4 篇文章 0 订阅
1 篇文章 0 订阅

假设有如图所示的一棵二叉树,我们分别对其前序、中序、后序以及层序进行非递归遍历。
在这里插入图片描述

  • 前提:二叉树采用孩子表示法
class Node {
    Node left = null;//指向左子树
    Node right = null;//只指向右子树
    int val;

    public Node(int val){
        this.val=val;
    }
}

① 前 序 非 递 归 :根→ 左子树 → 右子树

【方法1】

  • 思路分析: 借助栈“ 先进后出 ”的特性。 (与层序遍历相似)

    1.空树---->直接返回
    2.非空--->让根先入栈
    3.如果队列栈不为空,循环执行以”下操作<一
        a.取栈顶元素---cur.peek()
        b.遍历该该元素
        c.删除栈顶元素
        d.如果当前节点有右子树,将右子树入栈
        e.如果当前节点有左子树,将左子树入栈
    

代码如下:

public void preOrder1(){
        if (root == null) {
            return;
        }

        Stack<Node> stack = new Stack<>();
        stack.push(root);
        System.out.println();
        System.out.print("非递归前序遍历1:");
        while (!stack.empty()){
            Node cur = stack.peek();
            System.out.print(cur.val+ " ");
            stack.pop();

            if(cur.right!=null){
                stack.push(cur.right);
            }

            if(cur.left!=null){
                stack.push(cur.left);
            }
        }
        System.out.println();
    }

【方法2】

  • 思路分析:沿着根的左子树向下遍历

1、根左右:根入栈 栈不为空 删除栈顶元素

2、顺着跟沿左子树向下遍历 遇到右子树 右子树保存入栈

3、当左边遍历完 cur=stack.peek 从栈顶元素开始又想左遍历

                     1
                   /  \
                 2     5
                / \    / \
               3   4  6   7  

【解释说明】

  • 先顺着根的左向下遍历, 根的右子树5入栈 ,然后2的右子树4入栈; 123遍历完后取栈顶元素4遍历, 4没有左子树;然后取栈顶元素5 遍历 5 6 ; 把7保存到栈 最后遍历7。

代码如下:

public void preOrder2(){
        if (root == null) {
            return;
        }
        Stack<Node> stack = new Stack<>();
        stack.push(root);
        System.out.print("非递归前序遍历2:");
        while (!stack.empty()) {
            Node cur = stack.peek();//获取栈顶元素(保存的右子树节点)
            stack.pop();

            while (cur!=null){
                //顺着cur左侧一直向下遍历
                System.out.print(cur.val + " ");

                //将右子树保存起来
                if(cur.right!=null){
                    stack.push(cur.right);
                }
                cur=cur.left;
            }
        }
    }

② 中 序 非 递 归 :左子树 → 根 → 右子树

  • 思路分析: 后递归的先退出----

(1)、 先找到以root为根的二叉树中最左侧的节点,并保存所经路径中所有的节点 Node cur = root:

             while(cur){
               s.push(cur);
               cur=cur -> left;
             }

(2) cur为空:cur对应的树已遍历完
获取栈顶元素x,此时x的左子树为空,可认为x的左子树已遍历结束;

遍历当前根节点:
          cur = s.peek();
          sout(cur.val);
          s.pop();

(3) 遍历cur的右子树:

  null----不处理
  非空 cur=cur.right

不管cur的右子树是否存在,将其当成一棵新的二叉树遍历。

代码如下:

public void inOrderNor() {
        if (root == null) {
            return;
        }

        Node cur = root;
        Stack<Node> stack = new Stack<>();
        System.out.println();
        System.out.print("非递归中序序遍历:");

        while (cur!=null||!stack.empty()){
            //找以root为根的二叉树最左侧的节点,并保存到所经路径中所有节点----栈
            while (cur!=null){
                stack.push(cur);
                cur=cur.left;
            }
            //cur为空,认为该树已遍历完
            //可以遍历cur的根节点,cur的根节点次数在栈顶
            cur = stack.peek();
            System.out.print(cur.val+" ");
            stack.pop();

            //以cur为根的二叉树:左子树已经遍历完,根节点已经遍历完,剩余右子树没有遍历
            cur=cur.right;
        }
    }

③ 后 序 非 递 归 :左子树 → 右子树 → 根

  • 思路分析:

(1)找到以cur为根节点的二叉树最左侧的节点,并保存所经路径中的所有节点;

 while(cur){
            s.push(cur);
            cur=cur -> left;
        }

(2) 获取栈顶元素----获取子树的根节点

 Node top = s.peek();

(3) 遍历右子树

  • 【注意】:为了防止出现死循环问题,我们必须要设置一个标志,来判断top的右子树是否已经遍历过(如果没有此操作,4的右子树6将会一直循环)

代码如下:

 public void postOrderNor() {
        if(root==null){
            return;
        }

        System.out.println();
        System.out.print("非递归后序遍历:");
        Stack<Node> s = new Stack<>();
        Node cur = root;
        Node flag = null;//标记刚刚遍历过的节点
        while (cur!=null || !s.empty()){
            // 找以cur为根的二叉树最左侧的节点,并保存到所经路径中所有节点----栈
            while (cur!=null){
                s.push(cur);
                cur=cur.left;
            }
            //获取cur子数的根
            Node top = s.peek();
            //top的右子树为空 || top的右子树已经遍历完成 (4的右子树6已经遍历,避免重复循环)
            if(top.right==null || top.right==flag){
                System.out.print(top.val + " ");
                flag=top;
                s.pop();
            }else{
                cur=top.right;
            }
        }
    }

④ 层序遍历 :1 2 4 3 5 6

  • 思路分析 : 【队列】

    1.空树---->直接返回
    2.非空—>让根先入队列
    3.如果队列不为空,循环执行以下操作:
    (1)、去队头元素
    (2)、遍历该节点
    (3)、如果当前节点有左子树,将左子树入队列
    (4)、如果当前节点有右子树,将右子树入队列

代码如下:

 private void ceng(Node root){
        if(root == null){
            return;
        }
        Queue<Node> queue = new LinkedList<>() ;
        queue.offer(root);
        while (!queue.isEmpty()){
           Node cur = queue.poll();
            System.out.print(cur.val+" ");

            if(cur.left!=null){
                queue.offer(cur.left);
            }
            if(cur.right!=null){
                queue.offer(cur.right);
            }
        }
    }
   
    //一般情况下,树的根节点是不能随便告诉去其他
      人的,参数能不传递就尽量不传递
     public void ceng(){
       System.out.print("层序遍历:");
       ceng(root);
     }

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值