离线和实时大数据开发实战

本文深入探讨了大数据开发,包括数据大图和数据平台大图的解析,重点介绍了离线数据开发中的Hadoop和Hive原理及优化。强调了维度建模在大数据仓库中的应用,如星形架构、雪花架构以及维度表和事实表的设计。同时,讨论了数据仓库的逻辑架构、规范以及数据湖的概念。
摘要由CSDN通过智能技术生成

在数据仓库的实际工作中,80%的时间会花费在任务调度、数据清洗和业务梳理上,只有20%的时间会投入到数据挖掘上。

第一篇 数据大图和数据平台大图

第1章 数据大图

第2章 数据平台大图

1.OLTP、OLAP
在这里插入图片描述
2.建模方法论:Kimball与Inmon对比
在这里插入图片描述
Kimball维度建模的主题以星形架构为主,主题和主题之间则用一致性维和企业总线体系架构来保证数据仓库的集成和一致性。
如果是 Inmon 模式,我们需要将数据库拆分成 用户实体表、成交日志实体表、用户与成交日志关系表等多个子模块。
如果是 Kimball 模式,我们则需要将数据库拆分成 用户维度表、用户资产事实表、成交事实表。在Kimball模式中,我们不需要单独维护关系表,因为关系已经冗余在维度表和事实表中。

第二篇 离线数据开发:大数据开发的主战场

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值