AAAI-2020 Neural Cognitive Diagnosis for Intelligent Education Systems

本文探讨了神经认知诊断(NeuralCD)框架在智能教育系统中的应用,旨在提升诊断准确性和可解释性。通过对学生和练习的因子向量建模,NeuralCD利用神经网络学习复杂的交互关系,解决了传统方法中线性交互不足的问题。实验表明,NeuralCD在实际数据集上表现出优越的性能,同时保持了可解释性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇博客对论文阐述自身的理解,并结合代码进行说明。

这是一篇知识追踪论文,现阶段的知识追踪一般分为两大类:一,静态知识追踪;二,动态知识追踪。本论文是前者,具体分类请见:

知识追踪/认知诊断常用模型总结 - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/394073305

关于静态与动态,我的理解是模型在预测时的区别,静态知识追踪模型如IRT,其在进行预测时会一直保持学生i的知识掌握程度不变。但是动态知识追踪模型,在进行预测时,由于使用了RNN,学生的知识掌握程度是会随着做题序列改变的。

本文所涉及到的模型有:MIRT,IRT,DINA,MF。这些模型具体如下:(64条消息) 多维IRT模型的EM估计_xux636的博客-CSDN博客https://blog.csdn.net/xux636/article/details/90368210项目反应理论(IRT)详解 - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/367628823

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值