行业里常见的酒店 mapping 算法的一般做法:
暂时无法在飞书文档外展示此内容
-
数据收集与预处理:
-
多源数据获取:从不同的数据源收集酒店信息,这些数据源可能包括在线旅游平台(如携程、Booking 等)、酒店集团官网、酒店预订系统、旅行社系统等。收集的信息包括酒店的基本信息(如酒店名称、地址、联系方式等)、房型信息(房型名称、床型、房间面积等)、价格信息、库存信息等。
-
数据清洗:对收集到的数据进行清洗,去除重复数据、错误数据和不完整数据。例如,对于酒店名称中可能存在的拼写错误、缩写、不同语言的表述等进行统一处理;对于地址信息中不规范的写法进行标准化处理。
-
数据标准化:将不同数据源的数据格式进行统一标准化,以便后续的比较和分析。例如,对于价格信息,统一货币单位和价格格式;对于房型信息,定义统一的床型分类标准、房间面积的度量单位等。
-
-
特征提取:
-
酒店特征:从酒店的各种信息中提取关键特征作为酒店的标识。常见的特征包括酒店名称、地址、地理位置坐标(经纬度)、酒店品牌、星级、周边的标志性建筑或景点等。这些特征能够帮助区分不同的酒店。
-
房型特征:针对房型提取特征,如房
-