Python打卡Day6—Pandas表格样式&数据可视化

一、Pandas 表格样式

Pandas 的样式是一个可视化的方法,像Excel一样对特定数据进行加粗、标红、背景标黄等,为了让数据更加清晰醒目,突出数据的逻辑和特征。

(一)字体颜色

对文字标注颜色。eg:把成绩超过80的分数用红色标注出来

(二)背景高亮

就是用背景高亮标记出空值,应用.highlight_null() 即可将空值高亮显示,同时用null_color参数可以指定该高亮的颜色。eg:假设有学生没有去考试,想看看哪些学生没有考试,把这部分进行背景高亮显示

(三)极值背景高亮

需要查找DataFrame每一列的最大值,通过highlight_max()方法用于将最大值高亮显示,并通过color参数修改高亮颜色。eg:标记出每个科目的最高分数

通过highlight_min() 方法可以将最小值高亮显示

同时显示极大值和极小值,并使用指定颜色:通过highlight_min() 和highlight_max() 方法再指定一下颜色即可

(三)横向对比

eg:需要标记出每个学生的单科最高分数:通过参数axis,横向对比大小,并把最大值进行高亮显示即可

同样的,也可以通过参数subset,选定一列对最大值进行高亮显示

(四)背景渐变

通过调用background_gradient() 方法,从而创建一个渐变的背景效果。eg:用不同的颜色来标注成绩,背景颜色越深,成绩越高

同样的,针对单个列,指定颜色系列

刚才我们是默认颜色渐变的范围了,接着我们来看如何指定颜色渐变的范围,来展现成绩的高低

通过调用background_gradient()方法,用了两个参数low=0.5 和high=0 表示渐变的起始值和结束

接着我们看看图和对特定范围内的值就行标注。eg:假如需要把60分以上的分数用颜色标注出来

通过参数vmin 和参数 vmax 设置渐变的最小值和最大值,就可以展现出来。

eg:用此次考试成绩表,添加标题

通过.set_caption()方法为DataFrame即可设置标题。

案列展示:

案例一:将科目分数小于60的值,用红色进行高亮显示

案例二:标记总分低于120分的分数

将每个学生的分数,进行加总和计算平均数,并保留两位小数,把分数低于120的学生,用红色进行标记即可

二、Pandas 可视化

常见的可视化图有如下几种:

• line:折线图

• pie:饼图

• bar:柱状图

• hist:直方图

• box:箱型图

• area:面积图

• scatter:散点图

(一)line:折线图

折线图一般用于描述数据的趋势

一组数据的折线图如下:

两组数据的折线图:

(二)pie:饼图

饼图一般用于展示数据的占比关系

看看以上四个数据的占比情况

(三)bar:柱状图

柱状图一般用于类别型数据的对比分析

一组数据的柱状图

二组数据的柱状图

横向柱状图

其他几种柱状图

(四)hist:直方图

直方图适合展现连续型数据的分布情况

一组数据的直方图

多组数据的直方图

指定分箱数量的直方图

(五)box:箱型图

箱型图用于展示数据的分布、识别异常值以及比较不同组之间的差异。

一组数据的箱型图

用两列数据来画两个箱型图

横向箱型图

(六)area:面积图

面积图是一种有效的数据可视化工具,用于展示数据的趋势、比较不同组之间的差异以及理解数据的部分与整体关系。广泛应用于统计学、经济学、市场调研、环境科学等领域,并为数据分析和决策提供了重要的支持。

一组数据的面积图

多组数据的面积图

(七)scatter:散点图

散点图显示两个连续型变量之间的关系和探索离群值。对于相对性,散点图有助于显示两个变量之间线性关系的强度。对于回归,散点图常常会添加拟合线。

用一列数据来画散点图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值