一、Pandas 表格样式
Pandas 的样式是一个可视化的方法,像Excel一样对特定数据进行加粗、标红、背景标黄等,为了让数据更加清晰醒目,突出数据的逻辑和特征。
(一)字体颜色
对文字标注颜色。eg:把成绩超过80的分数用红色标注出来
(二)背景高亮
就是用背景高亮标记出空值,应用.highlight_null() 即可将空值高亮显示,同时用null_color参数可以指定该高亮的颜色。eg:假设有学生没有去考试,想看看哪些学生没有考试,把这部分进行背景高亮显示
(三)极值背景高亮
需要查找DataFrame每一列的最大值,通过highlight_max()方法用于将最大值高亮显示,并通过color参数修改高亮颜色。eg:标记出每个科目的最高分数
通过highlight_min() 方法可以将最小值高亮显示
同时显示极大值和极小值,并使用指定颜色:通过highlight_min() 和highlight_max() 方法再指定一下颜色即可
(三)横向对比
eg:需要标记出每个学生的单科最高分数:通过参数axis,横向对比大小,并把最大值进行高亮显示即可
同样的,也可以通过参数subset,选定一列对最大值进行高亮显示
(四)背景渐变
通过调用background_gradient() 方法,从而创建一个渐变的背景效果。eg:用不同的颜色来标注成绩,背景颜色越深,成绩越高
同样的,针对单个列,指定颜色系列
刚才我们是默认颜色渐变的范围了,接着我们来看如何指定颜色渐变的范围,来展现成绩的高低
通过调用background_gradient()方法,用了两个参数low=0.5 和high=0 表示渐变的起始值和结束
接着我们看看图和对特定范围内的值就行标注。eg:假如需要把60分以上的分数用颜色标注出来
通过参数vmin 和参数 vmax 设置渐变的最小值和最大值,就可以展现出来。
eg:用此次考试成绩表,添加标题
通过.set_caption()方法为DataFrame即可设置标题。
案列展示:
案例一:将科目分数小于60的值,用红色进行高亮显示
案例二:标记总分低于120分的分数
将每个学生的分数,进行加总和计算平均数,并保留两位小数,把分数低于120的学生,用红色进行标记即可
二、Pandas 可视化
常见的可视化图有如下几种:
• line:折线图
• pie:饼图
• bar:柱状图
• hist:直方图
• box:箱型图
• area:面积图
• scatter:散点图
(一)line:折线图
折线图一般用于描述数据的趋势
一组数据的折线图如下:
两组数据的折线图:
(二)pie:饼图
饼图一般用于展示数据的占比关系
看看以上四个数据的占比情况
(三)bar:柱状图
柱状图一般用于类别型数据的对比分析
一组数据的柱状图
二组数据的柱状图
横向柱状图
其他几种柱状图
(四)hist:直方图
直方图适合展现连续型数据的分布情况
一组数据的直方图
多组数据的直方图
指定分箱数量的直方图
(五)box:箱型图
箱型图用于展示数据的分布、识别异常值以及比较不同组之间的差异。
一组数据的箱型图
用两列数据来画两个箱型图
横向箱型图
(六)area:面积图
面积图是一种有效的数据可视化工具,用于展示数据的趋势、比较不同组之间的差异以及理解数据的部分与整体关系。广泛应用于统计学、经济学、市场调研、环境科学等领域,并为数据分析和决策提供了重要的支持。
一组数据的面积图
多组数据的面积图
(七)scatter:散点图
散点图显示两个连续型变量之间的关系和探索离群值。对于相对性,散点图有助于显示两个变量之间线性关系的强度。对于回归,散点图常常会添加拟合线。
用一列数据来画散点图