数据分析

数据分析

1、概念

广义的数据分析包括狭义数据分析和数据挖掘。

狭义的数据分析是指根据分析目的,采用对比分析、分组分析、交叉分析和回归分析等分析方法,对收集来的数据进行处理与分析,提取有价值的信息,发挥数据的作用,得到一个特征统计量结果的过程。
数据挖掘则是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,通过应用聚类、分类、回归和关联规则等技术,挖掘潜在价值的过程。

          ~~**拆分合 ! 比较 ! 预测!**~~ 
  • - 2、流程

需求–数据获取–预处理–分析建模–模型评价优化–部署

需求:看目的
数据获取:内部历史数据+python爬虫获取
数据预处理:合并、清洗数据、变换、标准化
分析建模:对比、分组、交叉、回归、聚类、分类、关联规则…
模型评价+优化:指标评价
部署:应用实际的过程

  • 3、了解数据分析应用场景
客户分析根据客户的需求、职业、经济、兴趣等,使用统计分析法和预测验证法,分析客户的忠诚度、注意力、收益等特征,提高销售效率
营销分析分析竞争产品、自家产品成本和售价、销售渠道、广告和促销,实现最大利润化
社交媒体分析用户的特征,比如,发表的内容、访问频率和内容、与其他用户的互动行为,进而推送合适的广告
网络安全新型的病毒防御系统可使用数据分析技术,建立潜在攻击识别分析模型,监测大量网络活动数据和相应的访问行为,识别可能进行入侵的可疑模式,做到未雨绸缪。
设备管理通过物联网技术能够收集和分析设备上的数据流,包括连续用电、零部件温度、环境湿度和污染物颗粒等无数潜在特征,建立设备管理模型,从而预测设备故障,合理安排预防性的维护,以确保设备正常作业,降低因设备故障带来的安全风险。
欺诈行为检测各大金融机构,电信部门可利用用户基本信息,用户交易信息,用户通话短信信息等数据,识别可能发生的潜在欺诈交易,做到提前预防未雨绸缪。

数据无非就是通过拆分合比等数据统计方法,再结合实际分析来挖掘潜在信息,要了解数据本身的大量性、不完全、有噪声、模糊性、随机性等性质,深入了解数据所处的场景是数据挖掘的第一步

92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页