数据分析

数据分析包括对比分析、分组分析等方法,用于提取数据中的有价值信息。数据挖掘涉及聚类、分类等技术,从实际数据中发现潜在价值。流程涵盖需求分析、数据获取、预处理、建模及部署。应用场景强调理解数据特性和实际场景。
摘要由CSDN通过智能技术生成

数据分析

1、概念

广义的数据分析包括狭义数据分析和数据挖掘。

狭义的数据分析是指根据分析目的,采用对比分析、分组分析、交叉分析和回归分析等分析方法,对收集来的数据进行处理与分析,提取有价值的信息,发挥数据的作用,得到一个特征统计量结果的过程。
数据挖掘则是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,通过应用聚类、分类、回归和关联规则等技术,挖掘潜在价值的过程。

          ~~**拆分合 ! 比较 ! 预测!**~~ 
  • - 2、流程

需求–数据获取–预处理–分析建模–模型评价优化–部署

需求:看目的
数据获取:内部历史数据+python爬虫获取
数据预处理:合并、清洗数据、变换、标准化
分析建模:对比、分组、交叉、回归、聚类、分类、关联规则…
模型评价+优化:指标评价
部署:应用实际的过程

  • 3、了解数据分析应用场景
客户分析 根据客户的需求、职业、经济、兴趣等,使用统计分析法和预测验证法,分析客户的忠诚度、注意力、收益等特征,提高销售效率
营销分析 分析竞争产品、自家产品成本和售价、销售渠道、广
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值