pytorch中张量的创建和维度的操作

张量的运算是深度学习的基本操作,深度学习框架的重要功能之一就是支持张量的定义与运算。

1. 张量的数据类型

数据 pytorch类型 CPU上的张量 GPU上的张量
32位浮点数 torch.float32
torch.float
torch.FloatTensor torch.cuda.FloatTensor
64位浮点数 torch.float64
torch.double
torch.DoubleTensor torch.cuda.DoubleTensor
16位浮点数 torch.float16
torch.half
torch.HalfTensor torch.cuda.HalfTensor
8位无符号整数 torch.uint8 torch.ByteTensor torch.cuda.ByteTensor
8位带符号整数 torch.int8 torch.CharTensor torch.cuda.CharTensor
16位带符号整数 torch.int16
torch.short
torch.ShortTensor torch.cuda.ShortTensor
32位带符号整数 torch.int32
torch.int
torch.IntTensor torch.cuda.IntTensor
64位带符号整数 torch.int64
torch.long
torch.LongTensor torch.cuda.LongTensor
布尔型 rorch.bool torch.BoolTensor torch.cuda.BoolTensor

2. python列表和numpy数组转为python张量

2.1 转换python列表为python张量
t = torch.tensor([1, 2, 3, 4], dtype=torch.float32)  # 列表转张量并指定张量数据类型
print(t)
print(t.dtype)  # 张量类型

在这里插入图片描述

2.2 转换numpy数组为python张量
arr = np.array([1, 2, 3, 4])
t = torch.tensor(t)
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

饕餮&化骨龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值