工作记录
Even丶666
记录学习(python,深度学习,点云)
展开
-
OCR方向分类模型预处理的一种想法
接上一条博客,由于不同尺寸图片resize操作后可能会有不均匀拉伸,导致原始图片变模糊。本人拟采用如下操作:每张图片都要resize为48192的图片,先计算ratio=192//48假设输入图片高为H,宽为W,当Hratio<W时,对图片进行截断操作;当H*ratio>W时,最原始图片进行复制后截断,如下图所示,上代码:import osimport cv2import numpy as npimport argparsedef process(input_dir, out原创 2021-09-16 14:29:10 · 174 阅读 · 0 评论 -
padding
本文针对OCR cls模型中,不同尺寸图片resize后得到的图像可能会进行不均匀拉伸,导致图像不清晰。因此考虑在图像resize前先对图像进行padding操作,使之实现均匀缩放。(本人正在探索阶段,该想法未必可以提高准确率)上代码:import osimport cv2import numpy as npimport argparsedef process(input_dir, out_dir): for filename in os.listdir(input_dir):原创 2021-09-15 10:32:12 · 217 阅读 · 2 评论 -
记录一下今天踩的两个坑
python3 中两个数作商/ 返回的是浮点型,//返回的是整型。2.opencv读取图片时img.shape 返回的是h,w,c但是resize时相反,如果想把图片img resize为h,w,c应该执行cv2.resize(img,(w,h))。原创 2021-09-13 17:16:16 · 121 阅读 · 0 评论 -
训练集、验证集、测试集划分
在训练PaddleOCR方向分类模型之前,所有图片都在一个文件夹中,所有label信息都在同一个txt文件中,因此需要编写脚本,将其按照8:1:1的比例进行分割。import osimport reimport shutilimport randomimport argparsedef split_label(all_label, train_label, val_label, test_label): f = open(all_label, 'r') f_train = op原创 2021-09-06 10:08:43 · 388 阅读 · 0 评论 -
图片与标签数据合并 脚本编写
由于官方提供的数据集过大,因此放在了两个文件夹中。本脚本的目的是把label文件合并在一起,把图片合并在一个文件夹中。import osimport shutilimport argparsedef concat_labels(label1, label2, output): label_list = [] file1 = open(label1, "r") file2 = open(label2, "r") for line in file1.readlines(原创 2021-09-06 10:06:40 · 385 阅读 · 0 评论 -
图片裁剪 脚本编写
输入:图片,box(json文件)。输出:裁剪后图片。import osimport cv2import jsonimport argparsedef prepdata(json_file, img_file, out_dir): with open(json_file) as f: content = json.loads(f.read()) if os.path.isdir(img_file): for filename in os.listd原创 2021-09-06 10:03:53 · 334 阅读 · 0 评论 -
OCR方向分类模型标签生成 脚本编写
PaddleOCR官网方向分类模型要求正向图片标签为0,旋转180度后的图片标签为180。生成标签的txt格式为:目录+\t+label的格式,如train/123.jpg. 0import argparseimport osdef get_label(input, output, label): with open(output, "w") as f: if os.path.isdir(input): for filename in os.lis原创 2021-09-06 10:02:01 · 308 阅读 · 0 评论 -
图像翻转180度 脚本
import osimport cv2import argparsedef reverse_img(input, output): for filename in os.listdir(input): file, suffix = os.path.splitext(filename) if suffix.lower() not in [".jpg", ".jpeg", ".png"]: continue img_path原创 2021-09-06 09:58:28 · 176 阅读 · 0 评论