抖音取关-autojs

最近不少网友私信我,想要抖音取关的自动化脚本,奈何上次写的脚本已经好几个月没有更新了,导致可能部分代码已经失效,而且唐丁没有给大家详细的安装和使用教程,导致不少朋友拿到脚本后也不知道如何使用。今天唐丁就一次性给大家演示一下。

请添加图片描述
在这里插入图片描述
唐丁最近完善了一下后台管理系统,增加了一些对脚本的支持接口,方便后面对脚本的发布、使用、升级等做统一的管理。今天就在这里一次性把脚本的使用流程说清楚,方便后续大家的安装和使用。

1、所有脚本都以安卓应用(apk)的形式发布,大家下载到手机上安装即可(安装过程可能提示病毒之类的异常,直接忽略即可)

2、安装后需要给予软件两个权限: 无障碍(软件正常运行的基础)和悬浮窗(日志查看)

从公众号(程序员唐丁)回复关键词获取脚本链接下载后,里面包括脚本软件和使用说明文档两部分,不清楚的同学可以直接安装说明文档进行操作。

当前脚本的种类还不算丰富,唐丁正在抓紧完善当中,后续所有的功能脚本会集成在一个安卓应用当中,大家可以直接在界面中选择需要的功能,配置相关参数后即可使用。这边再解释一下密钥相关的东西,获取密钥需要登录上述页面中的网站,注册并开通脚本账号后会自动生成一个密钥,一个账号只有一个密钥,密钥对唐丁的所有脚本都是通用的,新注册的用户有10次免费体验的机会。欢迎大家使用~~

### 数据 K-means 聚类分析方法 对于用户的浏览行为数据,可以采用K-means聚类算法来进行深入分析。该算法能够帮助识别不同类型的用户群体及其特征模式。 #### 数据预处理 在应用K-means之前,需先对原始数据集执行必要的清洗和转换操作。这通常涉及去除缺失值、标准化数值范围以及提有意义的特征向量表示每个样本点。例如,在处理视频观看记录时,可能考虑的因素有播放次数、点赞数量、转发频率等指标[^1]。 ```python import pandas as pd from sklearn.preprocessing import StandardScaler # 假设 df 是包含用户行为数据的数据框 df_cleaned = df.dropna() # 删除含有NA/NaN的行 scaler = StandardScaler() features_scaled = scaler.fit_transform(df_cleaned[['play_count', 'like_num', 'share_freq']]) ``` #### 确定最佳簇数 为了找到最优解,可以通过肘部法则(Elbow Method)来估计合适的簇的数量\( k \),即观察随着\( k \)增加总误差平方和的变化趋势图,并选拐点处对应的\( k \)[^2]。 ```python from sklearn.cluster import KMeans import matplotlib.pyplot as plt wcss = [] for i in range(1, 11): kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0) kmeans.fit(features_scaled) wcss.append(kmeans.inertia_) plt.plot(range(1, 11), wcss) plt.title('The Elbow Method') plt.xlabel('Number of clusters') plt.ylabel('WCSS') plt.show() ``` #### 执行K-means聚类 一旦确定了理想的簇数目后,则可正式运行K-means过程并将结果分配给各个实例: ```python optimal_k = 4 # 这里假设通过上述图表选择了4作为最佳簇数 kmeans_final = KMeans(n_clusters=optimal_k, init='k-means++', max_iter=300, n_init=10, random_state=0) clusters_labels = kmeans_final.fit_predict(features_scaled) # 将预测得到的结果加入到原DataFrame中以便后续解释 df_result = df.copy() df_result['cluster'] = clusters_labels ``` #### 结果可视化与解读 最后一步是对所得分组情况进行直观展示并尝试从中提炼有价值的信息。比如绘制散点图矩阵可以帮助理解各维度间的系;计算每一群体内部统计特性差异则有助于揭示潜在规律或异常情况的存在。 ```python import seaborn as sns sns.pairplot(data=df_result, hue="cluster", palette="Set2") plt.suptitle("Pair Plot by Cluster Labels", y=1.02) plt.show() group_stats = df_result.groupby(['cluster']).mean().reset_index() print(group_stats) ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员唐丁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值