自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 CBAM: Convolutional Block Attention Module论文阅读笔记

两个注意力模块(通道和空间)计算互补注意力,分别关注“是什么”和“在哪里”。考虑到这一点,可以以并行或顺序的方式放置两个模块。我们发现,顺序排列比并行排列给出更好的结果。对于顺序过程的安排,我们的实验结果表明,通道(注意力模块)在前比空间(注意力模块)在前略好。

2022-12-27 23:04:07 555 2

原创 Squeeze-and-Excitation Networks(SE-Net)论文阅读笔记

To mitigate the problem【特征图上每个单元不能利用对应感受野外的上下文区域信息】,提出“挤压和激励”——SE块,显式地建模信道之间地相互依赖性。​接受嵌入作为输入,并且产生每个通道调制权重的集合。目的是:利用挤压操作聚集的信息,捕获通道相关性。​使得来自网络全局感受野的信息被它的每一层使用,(也可选更复杂聚合技术)生成通道统计信息。​映射输入​到特征图​中,比如:卷积操作。来构造信息特征【多通道卷积】,前面针对。操作通过在每一层的局部感受野内融合。产生了聚集空间维度上特征图的描述符。

2022-12-27 02:42:40 133

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除