- 博客(2)
- 收藏
- 关注
原创 CBAM: Convolutional Block Attention Module论文阅读笔记
两个注意力模块(通道和空间)计算互补注意力,分别关注“是什么”和“在哪里”。考虑到这一点,可以以并行或顺序的方式放置两个模块。我们发现,顺序排列比并行排列给出更好的结果。对于顺序过程的安排,我们的实验结果表明,通道(注意力模块)在前比空间(注意力模块)在前略好。
2022-12-27 23:04:07 555 2
原创 Squeeze-and-Excitation Networks(SE-Net)论文阅读笔记
To mitigate the problem【特征图上每个单元不能利用对应感受野外的上下文区域信息】,提出“挤压和激励”——SE块,显式地建模信道之间地相互依赖性。接受嵌入作为输入,并且产生每个通道调制权重的集合。目的是:利用挤压操作聚集的信息,捕获通道相关性。使得来自网络全局感受野的信息被它的每一层使用,(也可选更复杂聚合技术)生成通道统计信息。映射输入到特征图中,比如:卷积操作。来构造信息特征【多通道卷积】,前面针对。操作通过在每一层的局部感受野内融合。产生了聚集空间维度上特征图的描述符。
2022-12-27 02:42:40 133
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人