4.快速幂与乘法逆元模板

问题50. Pow(x, n) - 力扣(LeetCode)求x的n次幂

分析:常规算法是循环相乘,时间复杂度On;这里介绍一种Ologn算法——快速幂,用于求解大数运算时复杂度较高,爆int情况。

原理:x^7=x^4*x^2*x^1观察可知,任意一个数(如7)都可以转化成若干个2的幂次的和(4+2+1)。这是因为7=111,而111=100+10+1。因此在快速幂中,一次判断每一个位置是否为1,是的话乘x的对应次幂即可。若n为负数,则x=1/x;n=-n即可。

func myPow(x float64, n int) float64 {
    if x == 0.0{
        return 0.0
    }
    if n<0{
        x,n=1/x,-n
    }
    var res float64=1.0
    for n>0{
        if n&1==1{
            res*=x
        }
        x*=x
        n>>=1
    }
    return res
}

以上是基础算法,对于一些题需要对1000000007取模,可以使用下面改进算法计算x^{n}%p

func qm(x,n,p int64)int64{
    var ans int64=1
    t:=x
    for n>0{
        if n&1==1{
            ans=(ans*t)%p
        }
        n>>=1
        t=(t*t)%p
    }
    return ans
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值