取球博弈
两个人玩取球的游戏。
一共有N个球,每人轮流取球,每次可取集合{n1,n2,n3}中的任何一个数目。
如果无法继续取球,则游戏结束。
此时,持有奇数个球的一方获胜。
如果两人都是奇数,则为平局。
假设双方都采用最聪明的取法,第一个取球的人一定能赢吗?
试编程解决这个问题。
输入格式:
第一行3个正整数n1 n2 n3,空格分开,表示每次可取的数目 (0<n1,n2,n3<100)第二行5个正整数x1 x2 … x5,空格分开,表示5局的初始球数(0<xi<1000)
输出格式:
一行5个字符,空格分开。分别表示每局先取球的人能否获胜。
能获胜则输出+,
次之,如有办法逼平对手,输出0,无论如何都会输,则输出-
例如,输入:
1 2 3
1 2 3 4 5
程序应该输出:
- 0 + 0 -
再例如,输入:
1 4 5
10 11 12 13 15
程序应该输出:
0 - 0 + +
再例如,输入:
2 3 5
7 8 9 10 11
程序应该输出:
- 0 0 0 0
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 3000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。
思路
用递归,然后记忆搜索
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
int n[3], num;
char cache[1000][2][2];
char f(int num, int me, int you)
{
int i;
char res;
bool ping = false;
if (num < n[0])
{
if ((me & 1) == 1 && (you & 1) == 0)
return '+';
else if ((me & 1) == 0 && (you & 1) == 1)
return '-';
else
return '0';
}
if (cache[num][me][you] != '\0')
return cache[num][me][you];
for (i = 0; i < 3; ++i)
{
if (num >= n[i])
res = f(num - n[i], you, (n[i] & 1) == 0 ? me : 1 - me);
if (res == '-')
{
cache[num][me][you] = '+';
return '+';
}
if (res == '0')
ping = true;
}
if (ping)
{
cache[num][me][you] = '0';
return '0';
}
else
{
cache[num][me][you] = '-';
return '-';
}
}
int main()
{
int i;
char res;
for (i = 0; i < 3; ++i)
scanf_s("%d", &n[i]);
sort(n, n + 3);
memset(cache, 0, sizeof(cache));
for (i = 0; i < 5; ++i)
{
scanf_s("%d", &num);
res = f(num, 0, 0);
printf("%c ", res);
}
return 0;
}
输入
1 7 8
900 901 903 905 907
结果
0 + - - +