质数分解-扩展(约数个数、约数和、欧拉函数)

质数分解-扩展(约数个数、约数和、欧拉函数)

  • C++实现
  • 此处vector<int> P, C并非必要,这里只是为了顺序查看分解后的质数
  • 约数个数与约数之和适用的场景多为处理一个极大的数(基本类型无法表示,如 N N N a i a_i ai相乘后的约数个数或约数之和)
    • 解决方法:
      • unordered_map替代divide函数中vector
      • pkeycvalue存储,汇总每个 a i a_i ai​​的分解结果,最后统一处理
      • 在最后一节会给出对应代码,有兴趣的话可以看一下

质数分解-简单回顾

根据算术基本定理,任何一个大于 1 1 1的正整数都能唯一分解为有限个质数的乘积,可写作:
N = p 1 c 1 p 2 c 2 ⋯ p m c m N = p_1^{c_1}p_2^{c_2}\cdots p_m^{c_m} N=p1c1p2c2pmcm
其中, c i c_i ci都是正整数, p i p_i pi都是质数,且满足 p 1 < p 2 < ⋯ < p m p_1\lt p_2 \lt \cdots \lt p_m p1<p2<<pm

该节是下面各节的基础,P, C在之后会被反复用到,请优先理解本节代码

后面章节在运行前,都需要先运行一遍本节divide函数

vector<int> P, C; // 存储的是对应的p_i, c_i

void divide(int n) 
{
    for (int i = 2; i <= n / i; i ++)
    {
        if (n % i == 0)
        {
            int s = 0;

            while (n % i == 0)
            {
                n /= i;
                s ++;
            }

            P.push_back(i);
            C.push_back(s);
        }
    }

    if (n > 1) // 可能会剩余一个大质数,也需将其加入P, C
    {
        P.push_back(n);
        C.push_back(1);
    }
}
输入:
n = 100

输出:
p = 2, c = 2
p = 5, c = 2

约数个数

针对一个正整数 N N N,它的正约数个数为:
( c 1 + 1 ) ∗ ( c 2 + 1 ) ∗ ⋯ ∗ ( c m + 1 ) = ∏ i = 1 m c i + 1 (c_1+1)* (c_2+1)* \cdots *(c_m+1)=\prod_{i = 1}^{m}{c_i+1} (c1+1)(c2+1)(cm+1)=i=1mci+1

int count()
{
    int res = 1;
    for (int i = 0; i < C.size(); i ++)
    {
        int c = C[i];

        res *= (c + 1);
    }
    return res;
}
输入:
n = 100 // 从divide函数输入

输出:
约数个数: 9

约数之和

针对一个正整数 N N N,它的正约数之和为:
( 1 + p 1 + p 1 2 + ⋯ + p 1 c 1 ) ∗ ⋯ ∗ ( 1 + p m + p m 2 + ⋯ + p m c m ) = ∏ i = 1 m ( ∑ j = 0 c i ( p i ) j ) (1+p_1+p_1^2+\cdots+p_1^{c_1})*\cdots*(1+p_m+p_m^2+\cdots+p_m^{c_m})=\prod_{i=1}^{m}\left( \sum_{j=0}^{c_i}{(p_i)^j} \right) (1+p1+p12++p1c1)(1+pm+pm2++pmcm)=i=1m(j=0ci(pi)j)

int sum()
{
    int res = 1;
    for (int i = 0; i < P.size(); i ++)
    {
        int p = P[i];

        int t = 1;
        // 秦九韶算法 -> p^3 + p^2 + p + 1 = p(p(p + 1) + 1) + 1
        for (int j = 0; j < C[i]; j ++) t = (t * p + 1); 

        res *= t;
    }
    return res;
}
输入:
n = 100 // 从divide函数输入

输出:
所有约数之和: 217

欧拉函数

1 ∼ N 1\sim N 1N中与 N N N互质的数的个数被称为欧拉函数,记为 φ ( N ) \varphi(N) φ(N)

  • ∀ a , b ∈ N \forall a, b \in \mathbb{N} a,bN,若 g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1,则称 a , b a,b a,b互质

φ ( N ) = N ∗ p 1 − 1 p 1 ∗ p 1 − 2 p 2 ∗ ⋯ ∗ p m − 1 p m = N ∗ ∏ p = 1 m ( 1 − 1 p ) \varphi(N) = N * \frac{p_1-1}{p_1} * \frac{p_1-2}{p_2} * \cdots * \frac{p_m-1}{p_m} = N * \prod_{p=1}^{m}\left({1-\frac{1}{p}}\right) φ(N)=Np1p11p2p12pmpm1=Np=1m(1p1)

int phi(int n)
{
    int res = n;

    for (int i = 0; i < P.size(); i ++)
    {
        int p = P[i];
        res = res / p * (p - 1);
    }

    return res;
}
输入:
n = 100

输出:
1~100中与100互质的数的个数: 40

附录

#include <iostream>
#include <unordered_map>

using namespace std;

unordered_map<int, int> map;

void divide(int n)
{   
    for (int i = 2; i <= n / i; i ++)
    {
        if (n % i == 0)
        {
            int s = 0;
            
            while (n % i == 0)
            {
                n /= i;
                s ++;
            }

            map[i] += s;
        }
    }

    if (n > 1) map[n] += 1;
}

int count()
{
    int res = 1;

    for (auto i : map) res *= (i.second + 1);

    return res;
}

int sum()
{
    int res = 1;

    for (auto i : map)
    {
        int p = i.first;

        int t = 1;
        for (int j = 0; j < i.second; j ++) t = (t * p + 1);

        res *= t;
    }

    return res;
}

int main()
{
    int a[] = {10, 45, 66, 39, 75};
    for (int i = 0; i < sizeof(a) / sizeof(int); i ++) divide(a[i]);
    cout << count() << endl;  // 360
    cout << sum() << endl; // 334317984
}
  • 31
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值