东北大学——应用数理统计——笔记

author: virgilwjj

我做的真题
https://download.csdn.net/download/m0_46107463/13689331

0 概率论基础

0.1 概率 P ( A ) P(A) P(A)

0.1.1 事件间的关系

事件独立: P ( A B ) = P ( A ) P ( B ) P(A B)=P(A) P(B) P(AB)=P(A)P(B)

事件互斥: P ( A B ) = 0 P(A B)=0 P(AB)=0

条件概率: P ( B ∣ A ) = P ( A B ) P ( A ) P(B \mid A) = \frac{P(A B)}{P(A)} P(BA)=P(A)P(AB)

0.1.2 概率的计算公式

加法公式:

  1. P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \cup B)=P(A)+P(B)-P(A B) P(AB)=P(A)+P(B)P(AB)

  2. P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A B)-P(A C)-P(B C)+P(A B C) P(ABC)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)

  3. 如果事件互斥: P ( A ∪ B ) = P ( A ) + P ( B ) P(A \cup B)=P(A)+P(B) P(AB)=P(A)+P(B)

减法公式:

  1. P ( A − B ) = P ( A ) − P ( A B ) P(A - B)=P(A)-P(A B) P(AB)=P(A)P(AB)
  2. 如果事件互斥: P ( A − B ) = P ( A ) P(A - B)=P(A) P(AB)=P(A)

乘法公式:

  1. P ( A B ) = P ( A ) P ( B ∣ A ) P(A B)=P(A) P(B \mid A) P(AB)=P(A)P(BA)

  2. P ( A B C ) = P ( A ) P ( B ∣ A ) P ( C ∣ A B ) P(A B C)=P(A) P(B \mid A) P(C \mid A B) P(ABC)=P(A)P(BA)P(CAB)

  3. 如果事件独立: P ( A B ) = P ( A ) P ( B ) P(A B)=P(A) P(B) P(AB)=P(A)P(B)

全概率公式: P ( A ) = ∑ i = 1 N P ( B i ) P ( A ∣ B i ) P(A)=\sum_{i=1}^{N} P(B_{i}) P(A \mid B_{i}) P(A)=i=1NP(Bi)P(ABi)

贝叶斯公式: P ( B j ∣ A ) = P ( B j ) P ( A ∣ B j ) ∑ i = 1 N P ( B i ) P ( A ∣ B i ) P(B_{j} \mid A)=\frac{P(B_{j}) P(A \mid B_{j})}{\sum_{i=1}^{N} P(B_{i}) P(A \mid B_{i})} P(BjA)=i=1NP(Bi)P(ABi)P(Bj)P(ABj)

0.2 随机变量 X X X

0.2.1 随机变量的概率分布 P P P

离散型——分布律: P { X = x k } = P k P\{X=x_{k}\}=P_{k} P{ X=xk}=Pk

特别地:

P { N = n } = P { N ⩽ n } − P { N ⩽ n − 1 } = F ( n ) − F ( n − 1 ) P\{N = n\}=P\{N \leqslant n\}-P\{N \leqslant n-1\}=F(n)-F(n-1) P{ N=n}=P{ Nn}P{ Nn1}=F(n)F(n1)

P { N = n } = P { N ⩾ n } − P { N ⩾ n + 1 } P\{N=n\}=P\{N \geqslant n\}-P\{N \geqslant n+1\} P{ N=n}=P{ Nn}P{ Nn+1}

连续型——概率密度: f ( x ) = d F ( x ) d x f(x)=\frac{d F(x)}{d x} f(x)=dxdF(x)

0.2.2 随机变量的分布函数 F ( x ) F(x) F(x)

离散型: F ( x ) = P { X ⩽ x k } = ∑ x k ≤ x P k F(x)=P\{X \leqslant x_{k}\}=\sum_{x_{k} \le x}^{} P_{k} F(x)=P{ Xxk}=xkxPk

连续型: F ( x ) = P { X ⩽ x } = ∫ − ∞ x f ( t ) d t F(x)=P\{X \leqslant x\}=\int_{-\infty}^{x} f(t) d t F(x)=P{ Xx}=xf(t)dt

0.2.3 随机变量的数学期望 E ( X ) E(X) E(X)

离散型: E ( X ) = ∑ k = 1 ∞ x k p k E(X)=\sum_{k=1}^{\infty} x_{k} p_{k} E(X)=k=1xkpk

连续型: E ( X ) = ∫ − ∞ ∞ x f ( x ) d x E(X)=\int_{-\infty}^{\infty} x f(x) d x E(X)=xf(x)dx

性质:

  1. E ( C ) = C E(C)=C E(C)=C

  2. E ( C X ) = C E ( X ) E(CX)=CE(X) E(CX)=CE(X)

  3. E ( X ± Y ) = E ( X ) ± E ( Y ) E(X \pm Y)=E(X) \pm E(Y) E(X±Y)=E(X)±E(Y)

  4. 如果 X 与 Y 互不相关: E ( X Y ) = E ( X ) E ( Y ) E(X Y)=E(X) E(Y) E(XY)=E(X)E(Y)

0.2.4 随机变量的方差 D ( X ) D(X) D(X)

定义: D ( X ) = E { [ X − E ( X ) ] 2 } D(X)=E\left\{[X-E(X)]^{2}\right\} D(X)=E{ [XE(X)]2}

性质:

  1. D ( X ) = E ( x 2 ) − [ E ( x ) ] 2 D(X)=E(x^{2})-[E(x)]^{2} D(X)=E(x2)[E(x)]2

  2. D ( C ) = 0 D(C) = 0 D(C)=0

  3. D ( a X + b ) = a 2 D ( X ) D(aX+b)=a^{2} D(X) D(aX+b)=a2D(X)

  4. D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 C o v ( X , Y ) D(X \pm Y)=D(X)+D(Y) \pm 2 Cov(X, Y) D(X±Y)=D(X)+D(Y)±2Cov(X,Y)

  5. 如果 X 与 Y 互不相关: D ( X ± Y ) = D ( X ) + D ( Y ) D(X \pm Y)=D(X)+D(Y) D(X±Y)=D(X)+D(Y)

0.2.5 随机变量的矩 a k , b k a_k,b_k ak,bk

k k k 阶原点矩: a k = E ( X k ) a_{k}=E(X^{k}) ak=E(Xk)

k k k 阶中心矩: b k = E { [ X − E ( X ) ] k } b_{k}=E\left\{[X-E(X)]^{k}\right\} bk=E{ [XE(X)]k}

k + l k+l k+l 阶混合矩: E ( X k Y l ) E(X^{k}Y^{l}) E(XkYl)

k + l k+l k+l 阶中心矩: E { [ X − E ( X ) ] k [ X − E ( X ) ] l } E\left\{[X-E(X)]^{k}[X-E(X)]^{l}\right\} E{ [XE(X)]k[XE(X)]l}

性质:

  1. a 1 = E ( X ) a_1=E(X) a1=E(X)
  2. a 2 = E ( X 2 ) a_2=E(X^2) a2=E(X2)
  3. b 2 = D ( X ) b_2=D(X) b2=D(X)

0.2.5 随机变量的协方差 C o v ( X , Y ) Cov(X,Y) Cov(X,Y)

定义: C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } Cov(X, Y)=E\left\{[X-E(X)] [Y-E(Y)]\right\} Cov(X,Y)=E{ [XE(X)][YE(Y)]}

性质:

  1. C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X, Y)=E(X Y)-E(X) E(Y) Cov(X,Y)=E(XY)E(X)E(Y)

  2. C o v ( X , Y ) = C o v ( Y , X ) Cov(X, Y)=Cov(Y, X) Cov(X,Y)=Cov(Y,X)

  3. C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(a X, b Y)=a b Cov(X, Y) Cov(aX,bY)=abCov(X,Y)

  4. C o v ( X 1 ± X 2 , Y ) = C o v ( X 1 , Y ) ± C o v ( X 2 , Y ) Cov(X_{1} \pm X_{2},Y)=Cov(X_{1},Y) \pm Cov(X_{2},Y) Cov(X1±X2,Y)=Cov(X1,Y)±Cov(X2,Y)

相关系数: ρ x y = C o v ( X , Y ) D ( X ) D ( Y ) \rho_{x y}=\frac{Cov(X, Y)}{\sqrt{D(X) D(Y)}} ρxy=D(X)D(Y) Cov(X,Y)

独立条件: X X X Y Y Y 都服从正态分布,且协方差为 0 0 0,可以推 X X X Y Y Y 独立

0.3 随机向量 η \eta η

随机向量: η = [ X 1 X 2 … X n ] T \eta=\begin{bmatrix} X_1 & X_2 & … & X_n \end{bmatrix}^T η=[X1X2Xn]T

随机向量的期望向量: θ = [ μ 1 μ 2 … μ n ] T \theta=\begin{bmatrix} \mu_1 & \mu_2 & … & \mu_n \end{bmatrix}^T θ=[μ1μ2μn]T

随机向量的协方差矩阵:

Σ = [ C o v ( X 1 , X 1 ) C o v ( X 1 , X 2 ) … C o v ( X 1 , X n ) C o v ( X 2 , X 1 ) C o v ( X 2 , X 2 ) … C o v ( X 2 , X n ) … … … … C o v ( X n , X 1 ) C o v ( X n , X 2 ) … C o v ( X n , X n ) ] \Sigma=\begin{bmatrix} Cov(X_1, X_1) & Cov(X_1, X_2) & … & Cov(X_1, X_n) \\ Cov(X_2, X_1) & Cov(X_2, X_2) & … & Cov(X_2, X_n) \\ … & … & … & … \\ Cov(X_n, X_1) & Cov(X_n, X_2) & … & Cov(X_n, X_n) \end{bmatrix} Σ=Cov(X1,X1)Cov(X2,X1)Cov(Xn,X1)Cov(X1,X2)Cov(X2,X2)Cov(Xn,X2)Cov(X1,Xn)Cov(X2,Xn)Cov(Xn,Xn)

η ∼ N ( θ , Σ ) \eta \sim N(\theta, \Sigma) ηN(θ,Σ)

性质: A η ∼ N ( A θ , A Σ A T ) A\eta \sim N(A\theta, A\Sigma A^T) AηN(Aθ,AΣAT)

0.4 C h e b y s h e v Chebyshev Chebyshev 不等式

  1. P { ∣ X − μ ∣ ⩾ ε } ⩽ σ 2 ε 2 P\{|X-\mu| \geqslant \varepsilon\} \leqslant \frac{\sigma^{2}}{\varepsilon^{2}} P{ Xμε}ε2σ2

  2. P { ∣ X − μ ∣ < ε } ⩾ 1 − σ 2 ε 2 P\{|X-\mu| < \varepsilon\} \geqslant 1-\frac{\sigma^{2}}{\varepsilon^{2}} P{ Xμ<ε}1ε2σ2

0.5 中心极限定理

∑ k = 1 n X i − n E ( X ) n D ( X ) ∼ N ( 0 , 1 ) \frac{\sum_{k=1}^{n} X_{i} - nE(X)}{\sqrt{nD(X)}} \sim N(0,1) nD(X) k=1nXinE(X)N(0,1)

author: virgilwjj

1 抽样分布

1.1 统计量 T T T

1.1.1 样本均值 X ˉ \bar X Xˉ

定义: X ˉ = 1 n ∑ i = 1 n 1 X i \bar{X}=\frac{1}{n} \sum_{i=1}^{n_{1}} X_{i} Xˉ=n1i=1n1Xi

性质:

  1. E ( X ˉ ) = E ( X ) E(\bar X)=E(X) E(Xˉ)=E(X)
  2. D ( X ˉ ) = D ( X ) n D(\bar X)= \frac{D(X)}{n} D(Xˉ)=nD(X)

1.1.2 样本方差 S 2 S^2 S2

定义: S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} S2=n11i=1n(XiXˉ)2

性质:

  1. E ( S 2 ) = D ( X ) E(S^2)=D(X) E(S2)=D(X)
  2. D ( S 2 ) = 2 D ( X ) 2 n − 1 D(S^2)= \frac{2 D(X)^2}{n-1} D(S2)=n12D(X)2

1.1.3 样本矩 A k , B k A_{k},B_{k} Ak,Bk

k k k 阶样本原点矩: A k = 1 n ∑ i = 1 n 1 X i k A_k=\frac{1}{n} \sum_{i=1}^{n_{1}} X_{i}^k Ak=n1i=1n1Xik

k k k 阶样本中心矩: B k = 1 n ∑ i = 1 n ( X i − X ˉ ) k B_k=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{k} Bk=n1i=1n(XiXˉ)k

性质:

  1. A 1 = X ˉ A_1 = \bar X A1=Xˉ
  2. A 2 = 1 n ∑ i = 1 n X i 2 A_2=\frac{1}{n} \sum_{i=1}^{n}X_{i}^{2} A2=n1i=1nXi2
  3. B 2 = n − 1 n S 2 B_2 = \frac{n-1}{n}S^2 B2=nn1S2

1.1.4. 顺序统计量 X [ i ] X_{[i]} X[i]

极小统计量: X [ 1 ] = m i n ( X i ) X_{[1]}=min(X_i) X[1]=min(Xi)

极大统计量: X [ n ] = m a x ( X i ) X_{[n]}=max(X_i) X[n]=max(Xi)

经验分布: F n ( X ) = k n , X [ k ] ⩽ X < X [ k + 1 ] F_n(X)=\frac{k}{n},\quad X_{[k]} \leqslant X < X_{[k+1]} Fn(X)=nk,X[k]X<X[k+1]

性质:

  1. P { X [ 1 ] ⩽ x } = 1 − P { X [ 1 ] > x } = 1 − [ P { X > x } ] n = 1 − [ 1 − P { X ⩽ x } ] n P\{X_{[1]} \leqslant x\}=1-P\{X_{[1]}>x\}=1-[P\{X > x\}]^{n}=1-[1-P\{X \leqslant x\}]^{n} P{ X[1]

  • 5
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值