递归实现
const int maxn = 100;
//将数组A的[L1, R1]与[L2, R2]区间合并为有序区间(此处L2即为R1 + 1)
void merge(int A[], int L1, int R1, int L2, int R2){
int i = L1, j = L2; //i指向A[L1],j指向A[L2]
int temp[maxn], index = 0; //temp临时存放合并后的数组,index为其下标
while(i <= R1 && j <= R2){
if(A[i] <= A[j])
temp[index++] = A[i++];
else
temp[index++] = A[j++];
}
while(i <= R1) temp[index++] = A[i++]; //将[L1, R1]剩余元素加入temp
while(j <= R2) temp[index++] = A[j++];
for(i = 0; i < index; i++)
A[L1 + i] = temp[i]; //将合并后的序列赋值回数组A
}
//将array数组当前区间[left, right]进行归并排序
void mergeSort(int A[], int left, int right){
if(left < right){
int mid = (left + right) / 2;
mergeSort(A, left, mid);
mergeSort(A, mid + 1, right);
merge(A, left, mid, mid + 1, right); //将左子区间和右子区间合并
}
}
非递归实现
void mergeSort(int A[]){
//step为组内元素个数,step / 2为左子区间元素个数,注意等号可以不取
for(int step = 2; step / 2 <= n; step *= 2){
//每step个元素一组,组内前step / 2个元素进行合并
for(int i = 0; i < n; i += step){
int mid = i + step / 2 - 1; //左区间元素个数为step / 2
if(mid + 1 <= n) //右子区间存在元素则合并
//左子区间为[i,mid],右子区间为[mid + 1, min(i + step -1, n)]
merge(A, i, mid, mid + 1, min(i + step - 1, n));
}
}
}
注:当仅需给出每趟归并结果时,merge函数可由sort函数替代(若时间允许)。
参考资料
[1]. 《算法笔记》P140-141