归并排序算法实现

递归实现

const int maxn = 100;
//将数组A的[L1, R1]与[L2, R2]区间合并为有序区间(此处L2即为R1 + 1)
void merge(int A[], int L1, int R1, int L2, int R2){
	int i = L1, j = L2;  //i指向A[L1],j指向A[L2]
	int temp[maxn], index = 0;  //temp临时存放合并后的数组,index为其下标
	while(i <= R1 && j <= R2){
		if(A[i] <= A[j])
			temp[index++] = A[i++];
		else
			temp[index++] = A[j++];
	}
	while(i <= R1)  temp[index++] = A[i++];  //将[L1, R1]剩余元素加入temp
	while(j <= R2)  temp[index++] = A[j++];
	for(i = 0; i < index; i++)
		A[L1 + i] = temp[i];  //将合并后的序列赋值回数组A
}
//将array数组当前区间[left, right]进行归并排序
void mergeSort(int A[], int left, int right){
	if(left < right){
		int mid = (left + right) / 2;
		mergeSort(A, left, mid);
		mergeSort(A, mid + 1, right);
		merge(A, left, mid, mid + 1, right);  //将左子区间和右子区间合并
	}
}

非递归实现

void mergeSort(int A[]){
	//step为组内元素个数,step / 2为左子区间元素个数,注意等号可以不取
	for(int step = 2; step / 2 <= n; step *= 2){
		//每step个元素一组,组内前step / 2个元素进行合并
		for(int i = 0; i < n; i += step){
			int mid = i + step / 2 - 1;  //左区间元素个数为step / 2
			if(mid + 1 <= n)  //右子区间存在元素则合并
				//左子区间为[i,mid],右子区间为[mid + 1, min(i + step -1, n)]
				merge(A, i, mid, mid + 1, min(i + step - 1, n));
		}
	}
}

注:当仅需给出每趟归并结果时,merge函数可由sort函数替代(若时间允许)。

参考资料

[1]. 《算法笔记》P140-141

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

D-A-X

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值