直线分割平面
求
n
+
1
n+1
n+1条直线最多可以将平面分割成几部分,此时已知前
n
n
n条直线以将平面分割成了
a
n
a_n
an个平面,那么新加入的这一条直线最多可以和前
n
n
n条直线相交,而该直线每穿过一个平面将将该平面分割成两部分,现在求新增平面个数,即求该直线穿过的平面的个数,即该直线被其他直线分割的段数,即第
n
+
1
n+1
n+1条直线将最多增加
n
n
n个平面。
故有:
∵
a
n
+
1
=
a
n
+
n
+
1
∴
a
n
=
1
2
(
1
+
n
)
×
n
+
1
\begin{aligned} \because a_{n+1}&=a_n+n+1\\ \therefore a_n&=\frac{1}{2}(1+n)\times n + 1 \end{aligned}
∵an+1∴an=an+n+1=21(1+n)×n+1
折线分割平面
求
n
n
n条折线分割的平面数
d
n
d_n
dn。现已知
n
n
n条直线可以将平面分割为
a
n
a_n
an块,而当将直线改为折线时,由于两条直线变为一条折线,因此将导致平面块增加的过程中,两条直线相交变为一条折线的过程中少两条段的分割,如图:
在直线合并为绿色折线的过程中,导致少了两条黄色的分割段,即导致少了两个平面块。
n
n
n条折线对应
2
n
2n
2n条直线,求
d
n
d_n
dn的过程即求
2
n
2n
2n条直线分割平面个数后,再减去直线两两合并而导致消失的平面数(即消失了
2
n
2n
2n个平面)。
故有:
d
n
=
a
2
n
−
2
n
=
2
n
2
−
n
+
1
\begin{aligned} d_n&=a_{2n}-2n\\ &=2n^2-n+1 \end{aligned}
dn=a2n−2n=2n2−n+1
平面分割空间
递推过程同上。设前 n n n个平面将空间分割成了 b n b_n bn个空间,求第 n + 1 n+1 n+1个平面将增加空间数,即求平面穿过的直线数,即 a n a_n an。为什么是直线数呢?新平面与原有平面相交后从某一个方向看,实际上穿过了原有 n n n个平面对应的 n n n条直线所产生的所有平面块,即新空间将增加 a n a_n an个。
故有:
∵
b
n
+
1
=
b
n
+
a
n
∴
b
n
=
1
6
(
n
3
+
5
n
+
6
)
\begin{aligned} \because b_{n+1}&=b_n+a_n\\ \therefore b_n&=\frac{1}{6}(n^3+5n+6) \end{aligned}
∵bn+1∴bn=bn+an=61(n3+5n+6)
直线分割空间
求
n
n
n条直线分割的空间数
c
n
c_n
cn即:首先
n
n
n条直线将平面分割成
a
n
a_n
an个块;同时
n
n
n个面将空间分割成
b
n
b_n
bn个块,因此在立体角度,每一层有
a
n
a_n
an个空间,总共有
b
n
b_n
bn层,故有:
c
n
=
a
n
×
b
n
=
(
1
2
(
1
+
n
)
×
n
+
1
)
×
(
1
6
(
n
3
+
5
n
+
6
)
)
=
1
12
(
n
5
+
n
4
+
7
n
3
+
11
n
2
+
16
n
)
+
1
\begin{aligned} c_n&=a_n\times b_n\\ &=(\frac{1}{2}(1+n)\times n + 1)\times (\frac{1}{6}(n^3+5n+6))\\ &=\frac{1}{12}(n^5+n^4+7n^3+11n^2+16n)+1 \end{aligned}
cn=an×bn=(21(1+n)×n+1)×(61(n3+5n+6))=121(n5+n4+7n3+11n2+16n)+1