平面分割(直线、面、折线)

直线分割平面

  求 n + 1 n+1 n+1条直线最多可以将平面分割成几部分,此时已知前 n n n条直线以将平面分割成了 a n a_n an个平面,那么新加入的这一条直线最多可以和前 n n n条直线相交,而该直线每穿过一个平面将将该平面分割成两部分,现在求新增平面个数,即求该直线穿过的平面的个数,即该直线被其他直线分割的段数,即第 n + 1 n+1 n+1条直线将最多增加 n n n个平面。
  故有:
∵ a n + 1 = a n + n + 1 ∴ a n = 1 2 ( 1 + n ) × n + 1 \begin{aligned} \because a_{n+1}&=a_n+n+1\\ \therefore a_n&=\frac{1}{2}(1+n)\times n + 1 \end{aligned} an+1an=an+n+1=21(1+n)×n+1

折线分割平面

  求 n n n条折线分割的平面数 d n d_n dn。现已知 n n n条直线可以将平面分割为 a n a_n an块,而当将直线改为折线时,由于两条直线变为一条折线,因此将导致平面块增加的过程中,两条直线相交变为一条折线的过程中少两条段的分割,如图:
在这里插入图片描述
  在直线合并为绿色折线的过程中,导致少了两条黄色的分割段,即导致少了两个平面块。 n n n条折线对应 2 n 2n 2n条直线,求 d n d_n dn的过程即求 2 n 2n 2n条直线分割平面个数后,再减去直线两两合并而导致消失的平面数(即消失了 2 n 2n 2n个平面)。
  故有:
d n = a 2 n − 2 n = 2 n 2 − n + 1 \begin{aligned} d_n&=a_{2n}-2n\\ &=2n^2-n+1 \end{aligned} dn=a2n2n=2n2n+1

平面分割空间

  递推过程同上。设前 n n n个平面将空间分割成了 b n b_n bn个空间,求第 n + 1 n+1 n+1个平面将增加空间数,即求平面穿过的直线数,即 a n a_n an。为什么是直线数呢?新平面与原有平面相交后从某一个方向看,实际上穿过了原有 n n n个平面对应的 n n n条直线所产生的所有平面块,即新空间将增加 a n a_n an个。

  故有:
∵ b n + 1 = b n + a n ∴ b n = 1 6 ( n 3 + 5 n + 6 ) \begin{aligned} \because b_{n+1}&=b_n+a_n\\ \therefore b_n&=\frac{1}{6}(n^3+5n+6) \end{aligned} bn+1bn=bn+an=61(n3+5n+6)

直线分割空间

  求 n n n条直线分割的空间数 c n c_n cn即:首先 n n n条直线将平面分割成 a n a_n an个块;同时 n n n个面将空间分割成 b n b_n bn个块,因此在立体角度,每一层有 a n a_n an个空间,总共有 b n b_n bn层,故有:
c n = a n × b n = ( 1 2 ( 1 + n ) × n + 1 ) × ( 1 6 ( n 3 + 5 n + 6 ) ) = 1 12 ( n 5 + n 4 + 7 n 3 + 11 n 2 + 16 n ) + 1 \begin{aligned} c_n&=a_n\times b_n\\ &=(\frac{1}{2}(1+n)\times n + 1)\times (\frac{1}{6}(n^3+5n+6))\\ &=\frac{1}{12}(n^5+n^4+7n^3+11n^2+16n)+1 \end{aligned} cn=an×bn=(21(1+n)×n+1)×(61(n3+5n+6))=121(n5+n4+7n3+11n2+16n)+1


参考资料

n条直线最多把平面分割成几部分? n个平面最多把空间分割成几部分?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

D-A-X

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>