基本导数公式





自然界中,几乎一切事物都可以用函数来描述。我们生活在一个动态变化的世界,对函数求导,可以看出变量之间的变化规律。研究函数与导数有着重要意义,导数可以用于求解函数的极值问题、速度和加速度、切线、法线和曲率等问题,以及进行函数的泰勒展开和隐函数求导等。导数的应用非常广泛,涉及到物理学、工程学、经济学等领域。

函数、导数思想在编程中也有着广泛的应用。包括以下几个方面:

函数的最值:通过导数,我们可以求出函数的极值点,从而实现函数的最优化问题,例如求解最小成本、最大收益等。

函数的单调性:导数的符号可以用来判断函数的单调性,这对于一些需要单调性的算法和应用非常有用。

函数的零点:导数的零点对应着函数的极值点,通过求解导数的零点,可以找到函数取得极值的位置。

函数的切线、法线和曲率:导数可以用于计算函数的切线、法线和曲率,这些信息对于图形学、计算机视觉等领域非常重要。

函数的泰勒展开:通过导数,我们可以展开函数,得到函数在某一点附近的泰勒级数,这对于数值分析和逼近理论等领域非常有用。

程序优化:导数可以用于程序优化,例如通过求导来确定一个函数的局部最优解,或者通过导数来加速一些优化算法。

机器学习:导数可以用于机器学习中的优化算法,例如梯度下降法、牛顿法等,它们都需要用到导数来计算损失函数的梯度。


总之,想要成为一名高级程序员,一定要好好研究一下数学,将数学和编程、应用深度结合。


什么是导数

设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 的某个 邻域 ∗ ^* 内有定义, x x x x 0 x_0 x0 处取得增量 Δ x \Delta x Δx (这个增量 Δ x \Delta x Δx 可能为正也可能为负,确切地说就是一个变化量,有正负),点 x 0 + Δ x x_0+\Delta x x0+Δx 仍在该邻域内,相应地,因变量取得增量 Δ y \Delta y Δy Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y = f(x_0+\Delta x) - f(x_0) Δy=f(x0+Δx)f(x0);如果 Δ y \Delta y Δy Δ x \Delta x Δx 之比当 Δ x → 0 \Delta x \rightarrow 0 Δx0 时的极限存在,那么称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 处可导,并称这个极限为函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 处的导数,记为 f ′ ( x 0 ) f^\prime(x_0) f(x0).

f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f^\prime(x_0)=\lim\limits_{\Delta x\rightarrow0}\dfrac{\Delta y}{\Delta x}=\lim\limits_{\Delta x\rightarrow0}\dfrac{f(x_0+\Delta x) - f(x_0)}{\Delta x} f(x0)=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0).

也可记作 y ′ ∣ x = x 0 ,    d y d x ∣ x = x 0 ,     d f ( x ) d x ∣ x = x 0 y^\prime|_{x=x_0},\ \ \dfrac{\mathrm{d}y}{\mathrm{d}x}\vert_{x=x_0},\ \ \ \dfrac{\mathrm{d}f(x)}{\mathrm{d}x}|_{x=x_0} yx=x0,  dxdyx=x0,   dxdf(x)x=x0.


邻域 ∗ ^* :以 x 0 x_0 x0 为中心的任何开区间称为点 x 0 x_0 x0 的邻域,记作 U ( x 0 ) U(x_0) U(x0);在 U ( x 0 ) U(x_0) U(x0) 中去掉中心 x 0 x_0 x0 后,称为点 x 0 x_0 x0 的去心邻域,记作 U ∘ ( x 0 ) \stackrel{\circ}{U}(x_0) U(x0).

x 0 ∈ R , δ > 0 x_0 \in \mathrm{R}, \delta>0 x0R,δ>0,开区间 ( x 0 − δ , x 0 + δ ) (x_0-\delta,x_0+\delta) (x0δ,x0+δ) 称为点 x 0 x_0 x0 δ \delta δ 邻域,记作 U ( x 0 , δ ) U(x_0,\delta) U(x0,δ). 点 x 0 x_0 x0 的去心 δ \delta δ 邻域记作 U ∘ ( x 0 , δ ) \stackrel{\circ}{U}(x_0,\delta) U(x0,δ) δ \delta δ 称为邻域半径.

对于 0 ≤ ∣ x − x 0 ∣ < δ 0\leq|x-x_0|<\delta 0xx0<δ ,绝对值的几何意义为距离, ∣ x − x 0 ∣ |x-x_0| xx0 x x x x 0 x_0 x0 的距离. 0 ≤ ∣ x − x 0 ∣ < δ 0\leq|x-x_0|<\delta 0xx0<δ x x x x 0 x_0 x0 的距离大于等于 0 小于等于 δ \delta δ x ∈ ( x 0 − δ , x 0 + δ ) x\in (x_0-\delta,x_0+\delta) x(x0δ,x0+δ),即 x ∈ U ( x 0 , δ ) x\in U(x_0,\delta) xU(x0,δ).

同样地,对于 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ ,意思是 x ∈ ( x 0 − δ , x 0 ) ∪ ( x 0 , x 0 + δ ) x\in (x_0-\delta,x_0)\cup(x_0,x_0+\delta) x(x0δ,x0)(x0,x0+δ),即 x ∈   U ∘ ( x 0 , δ ) x\in\ \stackrel{\circ}{U}(x_0,\delta) x U(x0,δ).


导数的本质

从导数的定义可以看出,导数的本质就是一个求极限的运算,从函数图像上来看,导数的几何意义就是函数曲线上某点处的斜率。


基本导数公式

( C ) ′ = 0       , ( C 是常数 ) . (\mathrm{C})^\prime =0\ \ \ \ \ ,(\mathrm{C}是常数). (C)=0     ,(C是常数).

( s i n   x ) ′ = c o s   x (\mathrm{sin}\ x)^\prime = \mathrm{cos}\ x (sin x)=cos x

( x u ) ′ = u ⋅ x u − 1 (x^u)^\prime = u\cdot x^{u-1} (xu)=uxu1

( c o s   x ) ′ = −   s i n   x (\mathrm{cos}\ x)^\prime = -\ \mathrm{sin}\ x (cos x)= sin x

( t a n   x ) ′ = ( s i n   x c o s   x ) ′ = c o s 2 x + s i n 2 x c o s 2 x = s e c 2 x (\mathrm{tan}\ x)^\prime = \bigg(\dfrac{\mathrm{sin}\ x}{\mathrm{cos}\ x}\bigg)^\prime =\dfrac{\mathrm{cos}^2x+\mathrm{sin}^2x}{\mathrm{cos}^2x}=\mathrm{sec}^2x (tan x)=(cos xsin x)=cos2xcos2x+sin2x=sec2x

( c o t   x ) ′ = ( c o s   x s i n   x ) ′ = −   s i n 2 x − c o s 2 x s i n 2 x = −   c s c 2   x (\mathrm{cot}\ x)^\prime = \bigg(\dfrac{\mathrm{cos}\ x}{\mathrm{sin}\ x}\bigg)^\prime = \dfrac{-\ \mathrm{sin}^2x-\mathrm{cos}^2x}{\mathrm{sin}^2x} = -\ \mathrm{csc}^2\ x (cot x)=(sin xcos x)=sin2x sin2xcos2x= csc2 x

( sec ⁡   x ) ′ = ( 1 cos ⁡   x ) ′ = − cos ⁡ − 2 x ⋅ ( − sin ⁡   x ) = sec ⁡   x ⋅ tan ⁡   x (\sec\ x)^\prime = \bigg(\dfrac{1}{\cos\ x}\bigg)^\prime = - \cos^{-2}x\cdot (-\sin\ x) = \sec\ x\cdot\tan\ x (sec x)=(cos x1)=cos2x(sin x)=sec xtan x

( csc ⁡   x ) ′ = ( 1 sin ⁡   x ) ′ = −   sin ⁡ − 2 x ⋅ cos ⁡   x = −   csc ⁡   x ⋅ cot ⁡   x (\csc\ x)^\prime = \bigg(\dfrac{1}{\sin\ x}\bigg)^\prime = -\ \sin^{-2}x\cdot\cos\ x = -\ \csc\ x\cdot\cot\ x (csc x)=(sin x1)= sin2xcos x= csc xcot x

( a x ) ′ = a x ⋅ ln ⁡ a      , ( a > 0 ,     a ≠ 1 ) . (\mathrm{a}^x)^\prime = \mathrm{a}^x\cdot\ln a\ \ \ \ ,(\mathrm{a}>0,\ \ \ a \neq 1). (ax)=axlna    ,(a>0,   a=1).

( e x ) ′ = e x (\mathrm{e}^x)^\prime = \mathrm{e}^x (ex)=ex

( log ⁡ a x ) ′ = 1 x ⋅ ln ⁡ a       , ( a > 0 , a ≠ 1 ) . (\log_ax)^\prime = \dfrac{1}{x\cdot\ln a}\ \ \ \ \ ,(a > 0, a\neq 1). (logax)=xlna1     ,(a>0,a=1).

( ln ⁡ x ) ′ = 1 x (\ln x)^\prime = \dfrac{1}{x} (lnx)=x1

( arcsin ⁡   x ) ′ = 1 1 − x 2 (\arcsin\ x)^\prime = \dfrac{1}{\sqrt{1-x^2}} (arcsin x)=1x2 1

( arccos ⁡   x ) ′ = −   1 1 − x 2 (\arccos\ x)^\prime = -\ \dfrac{1}{\sqrt{1-x^2}} (arccos x)= 1x2 1

( arctan ⁡   x ) ′ = 1 1 + x 2 (\arctan\ x)^\prime = \dfrac{1}{1+x^2} (arctan x)=1+x21

( a r c c o t   x ) ′ = −   1 1 + x 2 (\mathrm{arccot}\ x)^\prime = -\ \dfrac{1}{1+x^2} (arccot x)= 1+x21


函数的和、差、积、商的求导法则:

u = u ( x ) u=u(x) u=u(x), v = v ( x ) v=v(x) v=v(x) 都可导,则

(1) ( u ± v ) ′ = u ′ ± v ′ (u\pm v)^\prime = u^\prime \pm v^\prime (u±v)=u±v.

(2) ( C u ) ′ = C u ′       , ( C 是常数 ) . (\mathrm{C}u)^\prime = \mathrm{C}u^\prime\ \ \ \ \ ,(\mathrm{C}是常数). (Cu)=Cu     ,(C是常数).

(3) ( u v ) ′ = u ′ v + u v ′ (uv)^\prime = u^\prime v+uv^\prime (uv)=uv+uv.

(4) ( u v ) ′ = u ′ v − u v ′ v 2 \bigg(\dfrac{u}{v}\bigg)^\prime = \dfrac{u^\prime v-uv^\prime}{v^2} (vu)=v2uvuv.


反函数的求导法则:

x = f ( y ) x=f(y) x=f(y) 在区间 I y I_y Iy 内单调可导(单调才能有反函数),且 f ( y ) ≠ 0 f(y)\neq 0 f(y)=0,则它的反函数 y = f − 1 ( x ) y = f^{-1}(x) y=f1(x) I x = f ( I y ) I_x=f(I_y) Ix=f(Iy) 内也可导,则:
[ f − 1 ( x ) ] ′ = 1 f ′ ( y )       或     d y d x = 1 d x d y . [f^{-1}(x)]^\prime = \dfrac{1}{f^\prime(y)}\ \ \ \ \ \ 或\ \ \ \ \dfrac{\mathrm{d} y}{\mathrm{d}x}=\dfrac{1}{\dfrac{\mathrm{d}x}{\mathrm{d}y}}. [f1(x)]=f(y)1          dxdy=dydx1.

也就是说,反函数的导数等于直接函数导数的倒数

用函数图像来解释,应该更容易理解。对于 y = f ( x ) y=f(x) y=f(x) ,导数在图像上表现为函数图像曲线某点的切线,即函数图像在该点处的斜率。而反函数 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y) 的图像和直接函数 y = f ( x ) y=f(x) y=f(x) 的图像关于直线 y = x y=x y=x 对称,即将 x x x 轴和 y y y 反转,斜率 k = Δ y Δ x , ( Δ x → 0 ) k=\dfrac{\Delta y}{\Delta x}, (\Delta x\rightarrow0) k=ΔxΔy,(Δx0) ,当图像关于直线 y = x y=x y=x 对称反转后,在同一点处的斜率互为倒数关系 k ′ = 1 k = Δ x Δ y k^\prime = \dfrac{1}{k}=\dfrac{\Delta x}{\Delta y} k=k1=ΔyΔx. 所以,反函数的导数等于直接函数导数的倒数

x = sin ⁡ y x=\sin y x=siny y ∈ [ − π 2 , π 2 ] y\in [-\frac{\pi}{2},\frac{\pi}{2}] y[2π,2π] 为直接函数,则 y = arcsin ⁡ x y=\arcsin x y=arcsinx 是它们的反函数. x = sin ⁡ y x=\sin y x=siny 在开区间 I y = ( − π 2 , π 2 ) I_y=(-\frac{\pi}{2},\frac{\pi}{2}) Iy=(2π,2π) 内单调、可导,且 ( sin ⁡ y ) ′ = cos ⁡ y > 0 (\sin y)^\prime=\cos y>0 (siny)=cosy>0. 在对应区间 I x = ( − 1 , 1 ) I_x=(-1,1) Ix=(1,1) 上有 y ′ = ( arcsin ⁡ x ) ′ = 1 x ′ = 1 cos ⁡ y y^\prime=(\arcsin x)^\prime=\dfrac{1}{x^\prime}=\dfrac{1}{\cos y} y=(arcsinx)=x1=cosy1.

cos ⁡ y = 1 − sin ⁡ 2 y = 1 − x 2 \cos y=\sqrt{1-\sin^2y}=\sqrt{1-x^2} cosy=1sin2y =1x2 .

∴     y ′ = ( arcsin ⁡ x ) ′ = 1 x ′ = 1 cos ⁡ y = 1 1 − x 2 \therefore\ \ \ y^\prime=(\arcsin x)^\prime=\dfrac{1}{x^\prime}=\dfrac{1}{\cos y}=\dfrac{1}{\sqrt{1-x^2}}    y=(arcsinx)=x1=cosy1=1x2 1.

同样地,对于 x = cos ⁡ y x = \cos y x=cosy, y ∈ [ 0 , π ] y\in [0,\pi] y[0,π] 为直接函数,则 y = arccos ⁡ x y=\arccos x y=arccosx 是它的反函数. x = cos ⁡ y x=\cos y x=cosy 在开区间 I y = ( 0 , π ) I_y=(0, \pi) Iy=(0,π) 内单调、可导,且 ( cos ⁡ y ) ′ = − sin ⁡ y < 0 (\cos y)^\prime = -\sin y < 0 (cosy)=siny<0. 在对应的区间 I x = ( − 1 , 1 ) I_x=(-1,1) Ix=(1,1) 上有 y ′ = ( arccos ⁡ x ) ′ = 1 x ′ = − 1 sin ⁡ y y^\prime=(\arccos x)^\prime=\dfrac{1}{x^\prime}=-\dfrac{1}{\sin y} y=(arccosx)=x1=siny1.

sin ⁡ y = 1 − cos ⁡ 2 y = 1 − x 2 \sin y=\sqrt{1-\cos^2y}=\sqrt{1-x^2} siny=1cos2y =1x2 .

∴     y ′ = ( arccos ⁡ x ) ′ = − 1 1 − x 2 \therefore\ \ \ y^\prime=(\arccos x)^\prime=-\dfrac{1}{\sqrt{1-x^2}}    y=(arccosx)=1x2 1.


复合函数求导法则:
y = f ( u ) y=f(u) y=f(u),而 u = g ( x ) u=g(x) u=g(x) f ( u ) f(u) f(u) g ( x ) g(x) g(x) 都可导,则复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] 的导数为 y ′ = f ′ ( u ) ⋅ g ′ ( x ) y^\prime=f^\prime(u)\cdot g^\prime(x) y=f(u)g(x). 或 y ′ = d y d x = d y d u ⋅ d u d x y^\prime = \dfrac{\mathrm{d}y}{\mathrm{d}x}=\dfrac{\mathrm{d}y}{\mathrm{d}u}\cdot\dfrac{\mathrm{d}u}{\mathrm{d}x} y=dxdy=dudydxdu.


x趋于0时的等价替换及其适用条件

x趋于0时的等价替换及其适用条件 :点击跳转

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackey_Song_Odd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值