2067:【例2.5】圆
题目描述
输入半径r,输出圆的直径、周长、面积,数与数之间以一个空格分开,每个数保留小数点后4位。
解题思路
- 读取输入:从输入中读取半径r。
- 计算直径、周长、面积:
- 直径 = 2 * r
- 周长 = 2 * π * r
- 面积 = π * r^2
- 输出结果:输出计算得到的直径、周长、面积,每个数保留小数点后4位。
代码实现
#include <iostream>
#include <iomanip> // 用于设置输出格式
using namespace std;
const double PI = 3.1415926; // 定义π的值
int main() {
double r; // 定义半径
cin >> r; // 从输入读取半径
double diameter = 2 * r; // 计算直径
double circumference = 2 * PI * r; // 计算周长
double area = PI * r * r; // 计算面积
// 设置输出为固定小数点格式,保留4位小数
cout << fixed << setprecision(4) << diameter << " " << circumference << " " << area;
return 0; // 程序结束
}
代码解析
- 使用一个浮点数变量
r
来存储输入的半径。 - 计算圆的直径、周长和面积,使用π的近似值。
- 使用
cout
和<iomanip>
库中的setprecision
函数输出结果,保留4位小数。 - 程序使用标准输入输出流
cin
和cout
进行数据的读取和输出。
2068:【例2.6】鸡兔同笼
题目描述
已知头共x个,脚共y只,问笼中的鸡和兔各有多少只?
解题思路
- 读取输入:从输入中读取头的总数x和脚的总数y。
- 设立方程求解:
- 设鸡有j只,兔有t只,可以建立两个方程:
- j + t = x (头的总数)
- 2j + 4t = y (脚的总数)
- 通过解这两个方程,可以求出鸡和兔各有多少只。
- 设鸡有j只,兔有t只,可以建立两个方程:
- 输出结果:输出鸡和兔各自的数量。
代码实现
#include <iostream>
using namespace std;
int main() {
int x, y; // 定义头的总数和脚的总数
cin >> x >> y; // 从输入读取头和脚的数量
int j, t; // 定义鸡和兔的数量
t = (y - 2 * x) / 2; // 解方程求兔的数量
j = x - t; // 解方程求鸡的数量
cout << j << " " << t; // 输出鸡和兔的数量
return 0; // 程序结束
}
代码解析
- 使用两个整数变量
x
(头的总数)和y
(脚的总数)来存储输入的值。 - 通过解方程组计算出鸡(
j
)和兔(t
)的数量。 - 使用
cout
输出计算出的鸡和兔的数量。 - 程序使用标准输入输出流
cin
和cout
进行数据的读取和输出。
1011:甲流疫情死亡率
题目描述
根据甲流确诊数和死亡数,计算甲流的死亡率,输出格式为百分数,精确到小数点后3位。
解题思路
- 读取输入:从输入中读取甲流的确诊数和死亡数。
- 计算死亡率:死亡率 = (死亡数 / 确诊数)* 100。
- 输出结果:输出甲流的死亡率,格式为百分数,保留小数点后3位。
代码实现
#include <iostream>
#include <iomanip> // 用于设置输出格式
using namespace std;
int main() {
int confirmed, deaths; // 定义确诊数和死亡数
cin >> confirmed >> deaths; // 从输入读取确诊数和死亡数
double mortalityRate = (double)deaths / confirmed * 100; // 计算死亡率
// 设置输出为固定小数点格式,保留3位小数,并输出百分数
cout << fixed << setprecision(3) << mortalityRate << "%";
return 0; // 程序结束
}
代码解析
- 使用两个整数变量
confirmed
(确诊数)和deaths
(死亡数)来存储输入的值。 - 计算死亡率时,将死亡数和确诊数转换为浮点数以进行浮点数运算,然后乘以100得到百分比。
- 使用
cout
和<iomanip>
库中的setprecision
函数输出死亡率,保留3位小数,并附加%
符号表示百分比。 - 程序使用标准输入输出流
cin
和cout
进行数据的读取和输出。
1012:计算多项式的值
题目描述
对于多项式( f(x) = ax^3 + bx^2 + cx + d ) 和给定的 ( a, b, c, d, x ),计算 ( f(x) ) 的值,保留到小数点后7位。
解题思路
- 读取输入:从输入中读取5个实数,分别为x及参数a、b、c、d。
- 计算多项式:使用给定的参数值计算多项式 ( f(x) = ax^3 + bx^2 + cx + d )。
- 输出结果:输出多项式的值,保留到小数点后7位。
代码实现
#include <iostream>
#include <iomanip> // 用于设置输出格式
using namespace std;
int main() {
double x, a, b, c, d; // 定义x,及参数a、b、c、d
cin >> x >> a >> b >> c >> d; // 从输入读取x及参数a、b、c、d
// 计算多项式的值
double result = a * x * x * x + b * x * x + c * x + d;
// 设置输出为固定小数点格式,保留7位小数
cout << fixed << setprecision(7) << result;
return 0; // 程序结束
}
代码解析
- 使用5个浮点数变量
x
,a
,b
,c
,d
来存储输入的值。 - 根据给定的多项式公式计算
f(x)
的值。 - 使用
cout
和<iomanip>
库中的setprecision
函数输出计算结果,保留7位小数。 - 程序使用标准输入输出流
cin
和cout
进行数据的读取和输出。
1013:温度表达转化
题目描述
利用公式 C = 5 * (F - 32) / 9 (其中C表示摄氏温度,F表示华氏温度)进行计算转化,输入华氏温度F,输出摄氏温度C,要求精确到小数点后5位。
解题思路
- 读取输入:从输入中读取华氏温度F。
- 温度转化:使用公式 C = 5 * (F - 32) / 9 转换华氏温度到摄氏温度。
- 输出结果:输出摄氏温度C,保留小数点后5位。
代码实现
#include <iostream>
#include <iomanip> // 用于设置输出格式
using namespace std;
int main() {
double F; // 定义华氏温度变量
cin >> F; // 从输入读取华氏温度
// 转换华氏温度到摄氏温度
double C = 5 * (F - 32) / 9;
// 设置输出为固定小数点格式,保留5位小数
cout << fixed << setprecision(5) << C;
return 0; // 程序结束
}
代码解析
- 使用一个浮点数变量
F
来存储输入的华氏温度。 - 根据温度转换公式计算摄氏温度
C
。 - 使用
cout
和<iomanip>
库中的setprecision
函数输出摄氏温度,保留5位小数。 - 程序使用标准输入输出流
cin
和cout
进行数据的读取和输出。
1014:与圆相关的计算
题目描述
给出圆的半径,求圆的直径、周长和面积。输入圆的半径实数r,输出圆的直径、周长、面积,每个数保留小数点后4位。圆周率取值为3.14159。
解题思路
- 读取输入:从输入中读取圆的半径r。
- 计算圆的直径、周长和面积:
- 直径 = 2 * r
- 周长 = 2 * π * r
- 面积 = π * r^2
- 输出结果:输出圆的直径、周长、面积,每个数保留小数点后4位。
代码实现
#include <iostream>
#include <iomanip> // 用于设置输出格式
using namespace std;
const double PI = 3.14159; // 定义圆周率的值
int main() {
double r; // 定义圆的半径
cin >> r; // 从输入读取圆的半径
double diameter = 2 * r; // 计算直径
double circumference = 2 * PI * r; // 计算周长
double area = PI * r * r; // 计算面积
// 设置输出为固定小数点格式,保留4位小数
cout << fixed << setprecision(4) << diameter << " " << circumference << " " << area;
return 0; // 程序结束
}
代码解析
- 使用一个浮点数变量
r
来存储输入的圆的半径。 - 根据给定的圆周率
PI
和半径r
计算圆的直径、周长和面积。 - 使用
cout
和<iomanip>
库中的setprecision
函数输出结果,保留4位小数。 - 程序使用标准输入输出流
cin
和cout
进行数据的读取和输出。
1015:计算并联电阻的阻值
题目描述
对于阻值为r1和r2的电阻,其并联电阻阻值公式计算如下:R = 1 / ( (1 / r1) + (1 / r2))。输入两个电阻阻抗大小,浮点型。输出并联之后的阻抗大小,结果保留小数点后2位。
解题思路
- 读取输入:从输入中读取两个电阻的阻抗值r1和r2。
- 计算并联电阻的阻值:使用公式R = 1 / ( (1 / r1) + (1 / r2))计算并联后的电阻值。
- 输出结果:输出并联电阻的阻值,保留小数点后2位。
代码实现
#include <iostream>
#include <iomanip> // 用于设置输出格式
using namespace std;
int main() {
double r1, r2; // 定义两个电阻的阻抗值
cin >> r1 >> r2; // 从输入读取两个电阻的阻抗值
// 计算并联电阻的阻值
double R = 1 / (1 / r1 + 1 / r2);
// 设置输出为固定小数点格式,保留2位小数
cout << fixed << setprecision(2) << R;
return 0; // 程序结束
}
代码解析
- 使用两个浮点数变量
r1
和r2
来存储输入的两个电阻的阻抗值。 - 根据并联电阻的计算公式求出结果。
- 使用
cout
和<iomanip>
库中的setprecision
函数输出计算结果,保留2位小数。 - 程序使用标准输入输出流
cin
和cout
进行数据的读取和输出。