初赛第七章 - 排列组合(2)

排列组合习题目录

1. 基本概念理解与计算

1.1 排列数 (P(n, k))

1.1.1 公司年会

在一家公司的年会抽奖中,我们需要从25名员工中选择3名并决定他们的获奖顺序。这是一个典型的排列问题,可以通过排列数公式 (P(n, k)) 来解决。

计算公式:排列数 (P(n, k)) 定义为从 (n) 个不同元素中选择 (k) 个元素的所有可能排列方式的数量,计算公式为:
P ( n , k ) = n ! ( n − k ) ! P(n, k) = \frac{n!}{(n-k)!} P(n,k)=(nk)!n!

对于这个问题,(n = 25)(员工总数)和 (k = 3)(需要选择的员工数)。

具体计算
P ( 25 , 3 ) = 25 ! ( 25 − 3 ) ! = 25 ! 22 ! P(25, 3) = \frac{25!}{(25-3)!} = \frac{25!}{22!} P(25,3)=(253)!25!=22!25!
这可以简化计算为:
P ( 25 , 3 ) = 25 × 24 × 23 P(25, 3) = 25 \times 24 \times 23 P(25,3)=25×24×23
因此,计算结果为:
P ( 25 , 3 ) = 13800 P(25, 3) = 13800 P(25,3)=13800

所以,从25名员工中抽取3名员工分别赢得一等奖、二等奖和三等奖的不同抽奖结果共有 13800 种。

1.1.2 音乐会四重奏

在一所学校的音乐会上,需要从8名学生中选择4名来表演一首四重奏。每名学生都演奏不同的乐器。这同样是一个排列问题,因为每名被选中的学生将演奏特定的乐器,乐器的演奏顺序是固定的。

计算公式:排列数 (P(n, k)) 定义为从 (n) 个不同元素中选择 (k) 个元素的所有可能排列方式的数量,计算公式为:
P ( n , k ) = n ! ( n − k ) ! P(n, k) = \frac{n!}{(n-k)!} P(n,k)=(nk)!n!

对于这个问题,(n = 8)(学生总数)和 (k = 4)(需要选择的学生数)。

具体计算
P ( 8 , 4 ) = 8 ! ( 8 − 4 ) ! = 8 ! 4 ! P(8, 4) = \frac{8!}{(8-4)!} = \frac{8!}{4!} P(8,4)=(84)!8!=4!8!
这可以简化计算为:
P ( 8 , 4 ) = 8 × 7 × 6 × 5 P(8, 4) = 8 \times 7 \times 6 \times 5 P(8,4)=8×7×6×5
因此,计算结果为:
P ( 8 , 4 ) = 1680 P(8, 4) = 1680 P(8,4)=1680

所以,从8名学生中选择4名来表演一首四重奏的不同演出组合共有 1680 种。

1.1.3 书架排列问题

在一个书架排列问题中,我们要从5本不同的书中选择3本放在书架上的前三个位置。每本书都有不同的封面和内容,这意味着每本书的选择和排列顺序都很重要。

计算公式:排列数 (P(n, k)) 定义为从 (n) 个不同元素中选择 (k) 个元素的所有可能排列方式的数量,计算公式为:
P ( n , k ) = n ! ( n − k ) ! P(n, k) = \frac{n!}{(n-k)!} P(n,k)=(nk)!n!

对于这个问题,(n = 5)(书的总数)和 (k = 3)(需要放在书架上的书的数量)。

具体计算
P ( 5 , 3 ) = 5 ! ( 5 − 3 ) ! = 5 ! 2 ! P(5, 3) = \frac{5!}{(5-3)!} = \frac{5!}{2!} P(5,3)=(53)!5!=2!5!
这可以简化计算为:
P ( 5 , 3 ) = 5 × 4 × 3 P(5, 3) = 5 \times 4 \times 3 P(5,3)=5×4×3
因此,计算结果为:
P ( 5 , 3 ) = 60 P(5, 3) = 60 P(5,3)=60

所以,从5本不同的书中选择3本来放在书架上的前三个位置的不同排列方式共有 60 种。

1.1.4 数学竞赛排名问题

在一次数学竞赛中,总共有12名学生参加。组织者需要从这些学生中选出前4名并给予奖励。由于每名学生的排名位置都是独特的,这是一个排列问题。

计算公式:排列数 (P(n, k)) 定义为从 (n) 个不同元素中选择 (k) 个元素的所有可能排列方式的数量,计算公式为:
P ( n , k ) = n ! ( n − k ) ! P(n, k) = \frac{n!}{(n-k)!} P(n,k)=(nk)!n!

对于这个问题,(n = 12)(参赛学生总数)和 (k = 4)(需要选择并排名的学生数)。

具体计算
P ( 12 , 4 ) = 12 ! ( 12 − 4 ) ! = 12 ! 8 ! P(12, 4) = \frac{12!}{(12-4)!} = \frac{12!}{8!} P(12,4)=(124)!12!=8!12!
这可以简化计算为:
P ( 12 , 4 ) = 12 × 11 × 10 × 9 P(12, 4) = 12 \times 11 \times 10 \times 9 P(12,4)=12×11×10×9
因此,计算结果为:
P ( 12 , 4 ) = 11880 P(12, 4) = 11880 P(12,4)=11880

所以,从12名学生中选出前4名并给予奖励的不同排名方式共有 11880 种。

1.1.5 国际会议讨论小组问题

在一个国际会议上,组织者需要从9名代表中选择6名来组成一个特别讨论小组。由于小组成员的选择和排名都很重要,这构成了一个排列问题。

计算公式:排列数 (P(n, k)) 定义为从 (n) 个不同元素中选择 (k) 个元素的所有可能排列方式的数量,计算公式为:
P ( n , k ) = n ! ( n − k ) ! P(n, k) = \frac{n!}{(n-k)!} P(n,k)=(nk)!n!

对于这个问题,(n = 9)(代表总数)和 (k = 6)(需要选择的代表数)。

具体计算
P ( 9 , 6 ) = 9 ! ( 9 − 6 ) ! = 9 ! 3 ! P(9, 6) = \frac{9!}{(9-6)!} = \frac{9!}{3!} P(9,6)=(96)!9!=3!9!
这可以简化计算为:
P ( 9 , 6 ) = 9 × 8 × 7 × 6 × 5 × 4 P(9, 6) = 9 \times 8 \times 7 \times 6 \times 5 \times 4 P(9,6)=9×8×7×6×5×4
因此,计算结果为:
P ( 9 , 6 ) = 60480 P(9, 6) = 60480 P(9,6)=60480

所以,从9名代表中选择6名来组成一个特别讨论小组的不同组合和排列方式共有 60480 种。

1.2 组合数 (C(n, k))

1.2.1 社区志愿者小组

一个社区中心希望从10名志愿者中选出4名来组成一个特别活动小组。在这个情况中,只关心哪些志愿者被选中,而不关心他们的选择顺序,所以这是一个组合问题。

计算公式:组合数 (C(n, k)) 定义为从 (n) 个不同元素中无顺序地选择 (k) 个元素的方式数,计算公式为:
C ( n , k ) = n ! k ! ( n − k ) ! C(n, k) = \frac{n!}{k!(n-k)!} C(n,k)=k!(nk)!n!

对于这个问题,(n = 10)(志愿者总数)和 (k = 4)(需要选出的志愿者数)。

具体计算
C ( 10 , 4 ) = 10 ! 4 ! × ( 10 − 4 ) ! = 10 ! 4 ! × 6 ! C(10, 4) = \frac{10!}{4! \times (10-4)!} = \frac{10!}{4! \times 6!} C(10,4)=4!×(104)!10!=4!×6!10!
对于社区志愿者小组问题,从10名志愿者中选择4名来组成一个特别活动小组的不同组合方式共有 210 种。

1.2.2 教师工作坊参与者

一个教育机构准备举行一个教师工作坊,需要从8名教师中选择3名来参加。同样,组织者只关心哪些教师被选择,而非其顺序,标明这是一个组合问题。

计算公式
C ( n , k ) = n ! k ! ( n − k ) ! C(n, k) = \frac{n!}{k!(n-k)!} C(n,k)=k!(nk)!n!

对于这个问题,(n = 8)(教师总数)和 (k = 3)(需要选择的教师数)。

具体计算
C ( 8 , 3 ) = 8 ! 3 ! × ( 8 − 3 ) ! = 8 ! 3 ! × 5 ! C(8, 3) = \frac{8!}{3! \times (8-3)!} = \frac{8!}{3! \times 5!} C(8,3)=3!×(83)!8!=3!×5!8!
对于教师工作坊参与者问题,从8名教师中选择3名来参加工作坊的不同组合方式共有 56 种。

这两个计算结果均是通过使用组合公式 (C(n, k) = \frac{n!}{k!(n-k)!}) 得出的,确保了选择组合的数量计算是准确的。

1.2.3 学生委员会代表

一个学生组织需要从15名候选人中选出5名代表组成学生委员会。这个选择过程只关注谁被选中,而不考虑选择的顺序,因此这是一个组合问题。

计算公式:

C 15 5 = 15 ! 5 ! ( 15 − 5 ) ! C_{15}^{5} = \frac{15!}{5!(15-5)!} C155=5!(155)!15!

对于这个问题, n = 15 n = 15 n=15 (候选人总数)和 k = 5 k = 5 k=5 (需要选出的代表数)。

具体计算:

C 15 5 = 15 ! 5 ! ( 15 − 5 ) ! = 15 ! 5 ! 10 ! C_{15}^{5} = \frac{15!}{5!(15-5)!} = \frac{15!}{5!10!} C155=5!(155)!15!=5!10!15!

对于学生委员会代表问题,从15名候选人中选择5名代表的不同组合方式共有 3,003 种。

1.2.4 音乐会演奏者

一个音乐会需要从12名音乐家中选出4名进行演奏。主办方只关心哪些音乐家被选中,而不在意他们的演奏顺序,因此这是一个组合问题。

计算公式:

C 12 4 = 12 ! 4 ! ( 12 − 4 ) ! C_{12}^{4} = \frac{12!}{4!(12-4)!} C124=4!(124)!12!

对于这个问题, n = 12 n = 12 n=12 (音乐家总数)和 k = 4 k = 4 k=4 (需要选出的演奏者数)。

具体计算:

C 12 4 = 12 ! 4 ! ( 12 − 4 ) ! = 12 ! 4 ! 8 ! C_{12}^{4} = \frac{12!}{4!(12-4)!} = \frac{12!}{4!8!} C124=4!(124)!12!=4!8!12!

对于音乐会演奏者问题,从12名音乐家中选择4名进行演奏的不同组合方式共有 495 种。

1.2.5 花园设计方案

一位园艺师需要从9种不同的花卉中选择6种来设计一个花园。园艺师只关注选择哪些花卉,而不考虑它们的排列顺序,因此这是一个组合问题。

计算公式:

C 9 6 = 9 ! 6 ! ( 9 − 6 ) ! C_{9}^{6} = \frac{9!}{6!(9-6)!} C96=6!(96)!9!

对于这个问题, n = 9 n = 9 n=9 (可供选择的花卉总数)和 k = 6 k = 6 k=6 (需要选出的花卉数)。

具体计算:

C 9 6 = 9 ! 6 ! ( 9 − 6 ) ! = 9 ! 6 ! 3 ! C_{9}^{6} = \frac{9!}{6!(9-6)!} = \frac{9!}{6!3!} C96=6!(96)!9!=6!3!9!

对于花园设计方案问题,从9种不同的花卉中选择6种进行花园设计的不同组合方式共有 84 种。

2. 应用题

2.1 排列应用

2.1.1 密码锁

一个密码锁由4个转盘组成,每个转盘上有10个数字(0到9)。为了打开这个锁,必须将转盘转到正确的数字组合。这个密码锁的可能密码数量可以用排列来计算。

信息解析:

  • 总共有4个转盘,每个转盘有10个可能的数字。
  • 转盘的顺序很重要,因为不同的顺序会产生不同的密码。
  • 在每个位置上,都有10个数字可供选择。

计算公式:
可能的密码数量 = 10 × 10 × 10 × 10 = 1 0 4 = 10 , 000 10 \times 10 \times 10 \times 10 = 10^4 = 10,000 10×10×10×10=104=10,000

解释:
这是一个有重复的排列问题。每个转盘可以看作是一个位置,每个位置有10个选择。根据乘法原理,总的排列数就是每个位置的选择数相乘。

所以,这个密码锁有10,000种可能的密码组合。这意味着,如果有人试图通过尝试所有可能的组合来破解锁,平均需要尝试5,000次(假设密码是随机设置的)。

这个例子展示了排列在现实生活中的应用,特别是在安全领域。高质量的密码锁通常有更多的转盘和数字,从而增加了可能的密码组合数,使其更难被破解。

2.1.2 座位排列

在一个剧院里,有12个座位分别标记为A1到A12。现在有7个人需要在这些座位上就座,他们可以选择任意的座位。问有多少种不同的就座方式?

信息解析:

  • 总共有12个座位,7个人需要就座。
  • 每个人可以选择任意的座位,且座位的顺序很重要。
  • 一旦一个座位被占用,其他人就不能再选择这个座位。

计算公式:
不同的就座方式数 = P ( 12 , 7 ) = 12 ! ( 12 − 7 ) ! = 12 ! 5 ! P(12, 7) = \frac{12!}{(12-7)!} = \frac{12!}{5!} P(12,7)=(127)!12!=5!12!

解释:
这是一个无重复的排列问题。我们从12个座位中选择7个座位,每个座位只能被选择一次。根据排列的定义,总的就座方式数就是从12个座位中选7个座位的排列数。

计算结果:
P ( 12 , 7 ) = 12 ! 5 ! = 12 × 11 × 10 × 9 × 8 × 7 × 6 = 95 , 040 P(12, 7) = \frac{12!}{5!} = 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 = 95,040 P(12,7)=5!12!=12×11×10×9×8×7×6=95,040

所以,有95,040种不同的就座方式。

2.1.3 队伍排序

在一个比赛中,有8个队伍参加。现在需要将这8个队伍排成一列,以便进行入场仪式。问有多少种不同的排列方式?

信息解析:

  • 总共有8个队伍。
  • 队伍的顺序很重要,不同的顺序被视为不同的排列。
  • 每个队伍只能出现一次。

计算公式:
不同的排列方式数 = 8 ! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 8!=8×7×6×5×4×3×2×1

解释:
这是一个全排列问题。我们需要将8个队伍排成一列,每个队伍只能出现一次,且顺序很重要。根据全排列的定义,总的排列方式数就是8的阶乘。

计算结果:
8 ! = 40 , 320 8! = 40,320 8!=40,320

所以,有40,320种不同的队伍排列方式。

这些例子展示了排列在日常生活和工作中的广泛应用。无论是安排座位、组织队伍,还是设计密码,排列都提供了一种有效的方法来计算和分析不同的可能性。理解和应用排列,可以帮助我们做出更好的决策和计划。
好的,我将修改题目,使计算结果不超过1000。

2.1.4 电话号码

一个电话号码由7位数字组成(不包括区号)。如果第一位数字不能为0,问可能的不同电话号码有多少个?

解答:

第一位数字有9种选择(1到9),其余6位数字各有10种选择(0到9)。根据乘法原理,总的不同电话号码数为:

9 × 10 × 10 × 10 × 10 × 10 × 10 = 9 , 000 , 000 9 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 = 9,000,000 9×10×10×10×10×10×10=9,000,000

所以,可能的不同电话号码有9,000,000个。

2.1.5 花店花束

一个花店有5种不同的花。如果要制作一个包含3朵花的花束,且花的种类不能重复,问有多少种不同的花束组合?

解答:

这是一个无重复的排列问题。我们从5种花中选择3种花来制作花束,每种花只能选择一次。根据排列的定义,总的花束组合数为:

P ( 5 , 3 ) = 5 ! ( 5 − 3 ) ! = 5 ! 2 ! P(5, 3) = \frac{5!}{(5 - 3)!} = \frac{5!}{2!} P(5,3)=(53)!5!=2!5!

计算结果:

5 ! 2 ! = 5 × 4 × 3 = 60 \frac{5!}{2!} = 5 \times 4 \times 3 = 60 2!5!=5×4×3=60

所以,有60种不同的花束组合。

在这个问题中,我们需要从5种花中选择3种花,且每种花只能选择一次。这与之前的问题类似,都是无重复的排列问题。我们使用排列的计算公式,将总数量(5)和选择数量(3)代入其中,得到最终结果。

2.2 组合应用

当然,我会给你出三道计算结果不超过1000的组合应用题。

2.2.1 委员会成员选取

一个由10人组成的团队需要选出3人组成一个委员会。问有多少种不同的选取方式?

解答:

这是一个组合问题。我们从10人中选择3人,不考虑顺序。根据组合的定义,总的选取方式数为:

C ( 10 , 3 ) = 10 ! 3 ! ( 10 − 3 ) ! = 10 ! 3 ! 7 ! C(10, 3) = \frac{10!}{3!(10 - 3)!} = \frac{10!}{3!7!} C(10,3)=3!(103)!10!=3!7!10!

计算结果:

10 ! 3 ! 7 ! = 10 × 9 × 8 3 × 2 × 1 = 120 \frac{10!}{3!7!} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = 120 3!7!10!=3×2×110×9×8=120

所以,有120种不同的选取方式。

2.2.2 彩票中奖计算

一个彩票游戏需要从1到12的数字中选择3个不同的数字。问有多少种不同的选择方式?如果选中的3个数字与开奖的3个数字相同(顺序不限),就能中大奖。

解答:

选择号码的方式数是一个组合问题。我们从12个数字中选择3个,不考虑顺序。根据组合的定义,总的选择方式数为:

C ( 12 , 3 ) = 12 ! 3 ! ( 12 − 3 ) ! = 12 ! 3 ! 9 ! C(12, 3) = \frac{12!}{3!(12 - 3)!} = \frac{12!}{3!9!} C(12,3)=3!(123)!12!=3!9!12!

计算结果:

12 ! 3 ! 9 ! = 12 × 11 × 10 3 × 2 × 1 = 220 \frac{12!}{3!9!} = \frac{12 \times 11 \times 10}{3 \times 2 \times 1} = 220 3!9!12!=3×2×112×11×10=220

所以,有220种不同的选择方式。

如果我们选择的3个数字与开奖的3个数字相同(顺序不限),就能中大奖。因此,中大奖的概率为:

P ( 大奖 ) = 1 C ( 12 , 3 ) = 1 220 ≈ 0.0045 P(大奖) = \frac{1}{C(12, 3)} = \frac{1}{220} \approx 0.0045 P(大奖)=C(12,3)1=22010.0045

所以,中大奖的概率约为0.0045,或者说,平均每220张彩票才会有一张中大奖。

2.2.3 披萨配料选择

一家披萨店提供8种不同的配料,顾客可以选择其中的4种来制作自己的披萨。问顾客有多少种不同的选择方式?

解答:

这是一个组合问题。我们从8种配料中选择4种,不考虑顺序。根据组合的定义,总的选择方式数为:

C ( 8 , 4 ) = 8 ! 4 ! ( 8 − 4 ) ! = 8 ! 4 ! 4 ! C(8, 4) = \frac{8!}{4!(8 - 4)!} = \frac{8!}{4!4!} C(8,4)=4!(84)!8!=4!4!8!

计算结果:

8 ! 4 ! 4 ! = 8 × 7 × 6 × 5 4 × 3 × 2 × 1 = 70 \frac{8!}{4!4!} = \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1} = 70 4!4!8!=4×3×2×18×7×6×5=70

所以,顾客有70种不同的披萨配料选择方式。

好的,这里再给你出两道计算结果不超过1000的组合应用题。

2.2.4 图书馆书架选书

一个图书馆有15本不同的数学书,需要选出5本放在一个展示书架上。问有多少种不同的选书方式?

解答:

这是一个组合问题。我们从15本书中选择5本,不考虑顺序。根据组合的定义,总的选书方式数为:

C ( 15 , 5 ) = 15 ! 5 ! ( 15 − 5 ) ! = 15 ! 5 ! 10 ! C(15, 5) = \frac{15!}{5!(15 - 5)!} = \frac{15!}{5!10!} C(15,5)=5!(155)!15!=5!10!15!

计算结果:

15 ! 5 ! 10 ! = 15 × 14 × 13 × 12 × 11 5 × 4 × 3 × 2 × 1 = 3 , 003 \frac{15!}{5!10!} = \frac{15 \times 14 \times 13 \times 12 \times 11}{5 \times 4 \times 3 \times 2 \times 1} = 3,003 5!10!15!=5×4×3×2×115×14×13×12×11=3,003

所以,有3,003种不同的选书方式。

2.2.5 组成不同的四位数

用数字1, 2, 3, 4, 5组成不同的四位数,且每个数字只能使用一次。问可以组成多少个不同的四位数?

解答:

这是一个组合问题。我们从5个数字中选择4个来组成四位数,且每个数字只能使用一次。根据组合的定义,总的组合数为:

C ( 5 , 4 ) = 5 ! 4 ! ( 5 − 4 ) ! = 5 ! 4 ! 1 ! C(5, 4) = \frac{5!}{4!(5 - 4)!} = \frac{5!}{4!1!} C(5,4)=4!(54)!5!=4!1!5!

计算结果:

5 ! 4 ! 1 ! = 5 × 4 × 3 × 2 4 × 3 × 2 × 1 = 5 \frac{5!}{4!1!} = \frac{5 \times 4 \times 3 \times 2}{4 \times 3 \times 2 \times 1} = 5 4!1!5!=4×3×2×15×4×3×2=5

然而,这只是选择数字的组合数。对于每一个组合,我们还需要考虑这4个数字的排列顺序。根据排列的定义,4个数字的排列数为:

P ( 4 , 4 ) = 4 ! ( 4 − 4 ) ! = 4 ! 0 ! = 4 × 3 × 2 × 1 = 24 P(4, 4) = \frac{4!}{(4 - 4)!} = \frac{4!}{0!} = 4 \times 3 \times 2 \times 1 = 24 P(4,4)=(44)!4!=0!4!=4×3×2×1=24

所以,对于每一个数字的组合,我们有24种不同的排列方式。

因此,总的不同四位数的数量为组合数与排列数的乘积:

5 × 24 = 120 5 \times 24 = 120 5×24=120

所以,可以组成120个不同的四位数。

3. 多阶段决策问题

3.1 组合锁密码设置

一个组合锁有3个转盘,每个转盘上有0到9这10个数字。为了设置密码,需要在每个转盘上选择一个数字,且不允许重复。问有多少种不同的密码设置方式?如果要求第一个转盘上的数字必须是偶数,第二个转盘上的数字必须是奇数,第三个转盘上的数字必须是素数,那么有多少种不同的密码设置方式?

解答:

对于第一个问题,这是一个排列问题。我们从10个数字中选择3个,且选择的顺序很重要。根据排列的定义,不同的密码设置方式数为:

P ( 10 , 3 ) = 10 ! ( 10 − 3 ) ! = 10 ! 7 ! = 10 × 9 × 8 = 720 P(10, 3) = \frac{10!}{(10-3)!} = \frac{10!}{7!} = 10 \times 9 \times 8 = 720 P(10,3)=(103)!10!=7!10!=10×9×8=720

对于第二个问题,我们需要分阶段考虑:

  • 第一个转盘上有5个偶数(0, 2, 4, 6, 8),所以有5种选择方式。
  • 第二个转盘上有5个奇数(1, 3, 5, 7, 9),但是我们已经在第一个转盘上选了一个数字,所以只剩9种选择方式。
  • 第三个转盘上有4个素数(2, 3, 5, 7),但是我们已经在前两个转盘上选了两个数字,所以只剩8种选择方式。

因此,总的密码设置方式数为:

5 × 9 × 8 = 360 5 \times 9 \times 8 = 360 5×9×8=360

3.2 校园活动安排

一个学生社团准备在一周内的5个工作日(星期一到星期五)安排3个不同的活动。每个活动只能安排在一天进行,且不同的活动不能安排在同一天。问有多少种不同的活动安排方式?如果其中一个活动只能安排在星期三或星期五,那么有多少种不同的活动安排方式?

解答:

对于第一个问题,这是一个排列问题。我们从5个工作日中选择3个,且选择的顺序很重要。根据排列的定义,不同的活动安排方式数为:

P ( 5 , 3 ) = 5 ! ( 5 − 3 ) ! = 5 ! 2 ! = 5 × 4 × 3 = 60 P(5, 3) = \frac{5!}{(5-3)!} = \frac{5!}{2!} = 5 \times 4 \times 3 = 60 P(5,3)=(53)!5!=2!5!=5×4×3=60

对于第二个问题,我们需要分阶段考虑:

  • 对于只能安排在星期三或星期五的活动,我们有2种选择。假设我们选择在星期三进行这个活动。
  • 对于其他两个活动,我们从剩下的4个工作日(星期一、二、四、五)中选择2个,且选择的顺序很重要。根据排列的定义,有 P ( 4 , 2 ) = 4 ! ( 4 − 2 ) ! = 4 ! 2 ! = 4 × 3 = 12 P(4, 2) = \frac{4!}{(4-2)!} = \frac{4!}{2!} = 4 \times 3 = 12 P(4,2)=(42)!4!=2!4!=4×3=12 种选择方式。
  • 如果我们选择在星期五进行这个特殊的活动,同理可得其他两个活动有12种安排方式。

因此,总的活动安排方式数为:

2 × 12 = 24 2 \times 12 = 24 2×12=24

3.3 图书分类

一个图书馆有5个不同的类别,每个类别下有20本书。现在要从这些书中选出3本,且这3本书必须来自不同的类别。问有多少种不同的选书方式?如果要求这3本书中必须包括一本小说和一本历史书,那么有多少种不同的选书方式?

解答:

对于第一个问题,我们首先从5个类别中选择3个,然后从每个选中的类别中选一本书。

  • 从5个类别中选择3个,这是一个组合问题。根据组合的定义,有 C ( 5 , 3 ) = 5 ! 3 ! ( 5 − 3 ) ! = 5 ! 3 ! 2 ! = 10 C(5, 3) = \frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} = 10 C(5,3)=3!(53)!5!=3!2!5!=10 种选择方式。
  • 对于每一种类别的选择,我们有 20 × 20 × 20 = 8000 20 \times 20 \times 20 = 8000 20×20×20=8000 种选书方式,因为每个类别有20本书。

因此,总的选书方式数为:

10 × 8000 = 80000 10 \times 8000 = 80000 10×8000=80000

对于第二个问题,我们需要分阶段考虑:

  • 我们首先选择小说和历史书。这是一个排列问题,因为选择的顺序很重要。有 20 × 20 = 400 20 \times 20 = 400 20×20=400 种选择方式。
  • 对于第三本书,我们从其他三个类别中选择一个,然后从该类别的20本书中选一本。这有 3 × 20 = 60 3 \times 20 = 60 3×20=60 种选择方式。

因此,总的选书方式数为:

400 × 60 = 24000 400 \times 60 = 24000 400×60=24000
好的,这里再给你出三道关于排列组合的多阶段决策问题。

3.4 电影院座位安排

一个电影院有10排座位,每排有20个座位。现在要从中选出3个座位,且这3个座位必须在不同的排。问有多少种不同的选座方式?如果要求这3个座位必须连续(即在同一排内相邻),那么有多少种不同的选座方式?

解答:

对于第一个问题,我们首先从10排中选择3排,然后从每排选一个座位。

  • 从10排中选择3排,这是一个组合问题。根据组合的定义,有 C ( 10 , 3 ) = 10 ! 3 ! ( 10 − 3 ) ! = 10 ! 3 ! 7 ! = 120 C(10, 3) = \frac{10!}{3!(10-3)!} = \frac{10!}{3!7!} = 120 C(10,3)=3!(103)!10!=3!7!10!=120 种选择方式。
  • 对于每一种排的选择,我们有 20 × 20 × 20 = 8000 20 \times 20 \times 20 = 8000 20×20×20=8000 种选座方式,因为每排有20个座位。

因此,总的选座方式数为:

120 × 8000 = 960000 120 \times 8000 = 960000 120×8000=960000

对于第二个问题,我们需要分阶段考虑:

  • 我们首先从10排中选择1排,这有10种选择方式。
  • 然后,我们从选中的那一排的20个座位中选择3个连续的座位。这相当于从18个可能的起始位置中选择1个(因为最后两个座位不能作为起始位置,否则就不能选出3个连续的座位)。这有18种选择方式。

因此,总的选座方式数为:

10 × 18 = 180 10 \times 18 = 180 10×18=180

3.5 鲜花礼盒设计

一个花店准备推出一款鲜花礼盒,包含3朵不同种类的花。花店有5种玫瑰,4种百合,6种康乃馨。问可以设计出多少种不同的礼盒?如果要求礼盒中必须包含至少一朵玫瑰,那么可以设计出多少种不同的礼盒?

解答:

对于第一个问题,我们从每种花中选一朵。

  • 从5种玫瑰中选1朵,有5种选择方式。
  • 从4种百合中选1朵,有4种选择方式。
  • 从6种康乃馨中选1朵,有6种选择方式。

因此,总的礼盒设计数为:

5 × 4 × 6 = 120 5 \times 4 \times 6 = 120 5×4×6=120

对于第二个问题,我们需要分情况考虑:

  • 情况1:选1朵玫瑰,1朵百合,1朵康乃馨。这有 5 × 4 × 6 = 120 5 \times 4 \times 6 = 120 5×4×6=120 种设计方式。
  • 情况2:选2朵玫瑰,1朵百合。这有 C ( 5 , 2 ) × 4 = 10 × 4 = 40 C(5, 2) \times 4 = 10 \times 4 = 40 C(5,2)×4=10×4=40 种设计方式。
  • 情况3:选2朵玫瑰,1朵康乃馨。这有 C ( 5 , 2 ) × 6 = 10 × 6 = 60 C(5, 2) \times 6 = 10 \times 6 = 60 C(5,2)×6=10×6=60 种设计方式。
  • 情况4:选3朵玫瑰。这有 C ( 5 , 3 ) = 5 ! 3 ! ( 5 − 3 ) ! = 5 ! 3 ! 2 ! = 10 C(5, 3) = \frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} = 10 C(5,3)=3!(53)!5!=3!2!5!=10 种设计方式。

因此,总的礼盒设计数为:

120 + 40 + 60 + 10 = 230 120 + 40 + 60 + 10 = 230 120+40+60+10=230

3.6 新年派对游戏

在一个新年派对上,有8个人参加一个游戏。游戏规则是,每个人写下一个新年愿望,然后随机抽取3个人的愿望念出来。问有多少种不同的抽取方式?如果要求3个愿望必须来自不同的人,那么有多少种不同的抽取方式?

解答:

对于第一个问题,这是一个有放回的抽取问题,因为同一个人的愿望可能被多次抽到。我们可以将其看作是从8个愿望中抽取3次,每次抽取都是独立的。根据乘法原理,总的抽取方式数为:

8 × 8 × 8 = 512 8 \times 8 \times 8 = 512 8×8×8=512

对于第二个问题,这是一个无放回的抽取问题,也就是一个排列问题。我们从8个人中选择3个,且选择的顺序很重要。根据排列的定义,不同的抽取方式数为:

P ( 8 , 3 ) = 8 ! ( 8 − 3 ) ! = 8 ! 5 ! = 8 × 7 × 6 = 336 P(8, 3) = \frac{8!}{(8-3)!} = \frac{8!}{5!} = 8 \times 7 \times 6 = 336 P(8,3)=(83)!8!=5!8!=8×7×6=336

这三个问题进一步展示了如何在多阶段决策问题中运用排列组合的知识。在电影院座位安排问题中,我们看到了如何处理多维度的选择(排和座位)。在鲜花礼盒设计问题中,我们看到了如何分情况考虑以满足特定的条件(至少包含一朵玫瑰)。在新年派对游戏问题中,我们看到了有放回抽取和无放回抽取的区别。

通过练习这些问题,我们可以提高分析问题的能力,学会如何将复杂的问题分解为几个简单的子问题,并运用适当的排列组合知识来解决每个子问题。这种能力在许多领域,如概率论、统计学、算法设计等,都是非常重要的。

4. 重复元素的排列组合

4.1 重复排列

好的,这里给你出两道关于重复排列的题目。

4.1.1 密码设置

一个密码锁有4个按键,每个按键上有数字0到9。密码由4位数字组成,每个数字都可以重复使用。问有多少种不同的密码设置方式?

解答:

在这个问题中,我们有4个位置,每个位置都有10种选择(数字0到9),且每个数字可以重复使用。这是一个典型的重复排列问题。

根据重复排列的计算公式,不同的密码设置方式数为:

1 0 4 = 10 × 10 × 10 × 10 = 10000 10^4 = 10 \times 10 \times 10 \times 10 = 10000 104=10×10×10×10=10000

所以,总共有10000种不同的密码设置方式。

4.1.2 车牌号码

在某个城市,车牌号码由3个字母和3个数字组成。字母可以是A到Z中的任意一个,数字可以是0到9中的任意一个。字母和数字的位置是固定的,且字母在前,数字在后。如果字母和数字都可以重复使用,问有多少种不同的车牌号码?

解答:

这个问题可以分为两个部分:字母部分和数字部分。每个部分都是一个重复排列问题。

对于字母部分,我们有3个位置,每个位置都有26种选择(字母A到Z),且每个字母可以重复使用。根据重复排列的计算公式,不同的字母组合数为:

2 6 3 = 26 × 26 × 26 = 17576 26^3 = 26 \times 26 \times 26 = 17576 263=26×26×26=17576

对于数字部分,我们有3个位置,每个位置都有10种选择(数字0到9),且每个数字可以重复使用。根据重复排列的计算公式,不同的数字组合数为:

1 0 3 = 10 × 10 × 10 = 1000 10^3 = 10 \times 10 \times 10 = 1000 103=10×10×10=1000

由于车牌号码的字母部分和数字部分是独立的,我们可以使用乘法原理来计算总的号码数:

17576 × 1000 = 17576000 17576 \times 1000 = 17576000 17576×1000=17576000

所以,总共有17576000种不同的车牌号码。

这两个问题展示了重复排列在密码设置和车牌号码设计中的应用。在这些问题中,我们允许每个元素(数字或字母)在不同的位置上重复出现。这与普通的排列问题不同,在普通的排列问题中,每个元素只能使用一次。

重复排列的计算公式是 n k n^k nk,其中 n n n 是可选元素的数量, k k k 是位置的数量。这个公式很容易理解和应用。但是,在实际问题中,我们需要仔细分析问题的条件,以确定是否允许重复使用元素。

通过练习这些问题,我们可以加深对重复排列概念的理解,提高运用重复排列解决实际问题的能力。这种能力在许多领域,如密码学、编码理论、组合设计等,都有广泛的应用。

4.2 重复组合

4.2.1 果汁配方

一家果汁店提供4种原料:苹果、橙子、芒果和草莓。每杯果汁可以包含任意数量的任意原料,但总数必须是5份。例如,一杯果汁可以包含2份苹果,1份橙子,1份芒果和1份草莓。问有多少种不同的果汁配方?

解答:

让我们深入探讨一下为什么在重复组合的公式中使用 n + k − 1 n + k - 1 n+k1

在这个果汁配方的问题中,我们有4种原料(苹果、橙子、芒果和草莓),我们想选择5份原料来制作果汁。我们允许每种原料被重复选择,且选择的顺序不重要。

我们可以将这个问题转化为以下等价的问题:我们有5个空位,我们需要用4种原料来填充这些空位,每种原料可以使用任意多次。

现在,让我们想象一下,我们在这5个空位之间放置3个分隔符(因为我们有4种原料,所以我们需要3个分隔符将它们分开)。这些分隔符将5个空位分成4组,每组代表一种原料。每组中的空位数量代表选择该原料的份数。

例如,如果我们有如下的排列:

□ □ ∣ □ ∣ □ ∣ □ \square\square|\square|\square|\square □□

这表示我们选择2份第一种原料,1份第二种原料,1份第三种原料,1份第四种原料。

现在,问题转化为:我们有8个位置(5个空位 + 3个分隔符),我们需要从中选择3个位置放置分隔符。这就是一个标准的组合问题,可以用 C ( 8 , 3 ) C(8, 3) C(8,3) 来计算。

为什么我们有8个位置?因为我们有5个空位(代表5份原料)和3个分隔符(代表4-1=3,因为4种原料需要3个分隔符)。

所以,在重复组合的公式中,我们使用 n + k − 1 n + k - 1 n+k1,其中:

  • n n n 代表可选元素的种类数(在这个例子中,是4种原料)
  • k k k 代表选择的总数(在这个例子中,是5份原料)
  • n − 1 n - 1 n1 代表需要的分隔符数量(在这个例子中,是3个分隔符)

因此,我们有:

H ( 4 , 5 ) = C ( 4 + 5 − 1 , 5 ) = C ( 8 , 5 ) H(4, 5) = C(4 + 5 - 1, 5) = C(8, 5) H(4,5)=C(4+51,5)=C(8,5)

这个公式告诉我们,从4种原料中选择5份,允许重复选择,相当于从8个位置中选择5个位置(或者等价地,从8个位置中选择3个位置放置分隔符)。

这种转化为标准组合问题的思路是理解和运用重复组合概念的关键。通过这种转化,我们可以将一个看似复杂的问题简化为一个我们熟悉的问题。这不仅使计算变得容易,而且提供了一种直观的方式来理解问题的本质。

在这个问题中,我们从4种原料中选择5份,每种原料可以重复选择,且选择的顺序不重要。这是一个典型的重复组合问题。

我们可以使用重复组合的计算公式:

H ( n , k ) = C ( n + k − 1 , k ) = ( n + k − 1 ) ! k ! ( n − 1 ) ! H(n, k) = C(n + k - 1, k) = \frac{(n + k - 1)!}{k!(n - 1)!} H(n,k)=C(n+k1,k)=k!(n1)!(n+k1)!

其中, n n n 是可选元素的种类数, k k k 是选择的总数。

在这个问题中, n = 4 n = 4 n=4 (4种原料), k = 5 k = 5 k=5 (选择5份)。代入公式,我们得到:

H ( 4 , 5 ) = C ( 4 + 5 − 1 , 5 ) = C ( 8 , 5 ) = 8 ! 5 ! ( 8 − 5 ) ! = 8 ! 5 ! 3 ! = 8 × 7 × 6 3 × 2 × 1 = 56 H(4, 5) = C(4 + 5 - 1, 5) = C(8, 5) = \frac{8!}{5!(8 - 5)!} = \frac{8!}{5!3!} = \frac{8 \times 7 \times 6}{3 \times 2 \times 1} = 56 H(4,5)=C(4+51,5)=C(8,5)=5!(85)!8!=5!3!8!=3×2×18×7×6=56

所以,总共有56种不同的果汁配方。

4.2.2 投资方案

一个投资者准备将10万元投资到3个项目中。每个项目的投资金额必须是1万元的整数倍,且总投资金额必须等于10万元。问有多少种不同的投资方案?

解答:

这个问题可以转化为从13个单位(每个单位代表1万元)中选择10个单位,分配到3个项目中。每个项目可以获得任意数量的单位(包括0个),且分配的顺序不重要。这就是一个重复组合问题。

我们可以使用重复组合的计算公式:

H ( n , k ) = C ( n + k − 1 , k ) = ( n + k − 1 ) ! k ! ( n − 1 ) ! H(n, k) = C(n + k - 1, k) = \frac{(n + k - 1)!}{k!(n - 1)!} H(n,k)=C(n+k1,k)=k!(n1)!(n+k1)!

其中, n n n 是项目的数量, k k k 是总的单位数。

在这个问题中, n = 3 n = 3 n=3 (3个项目), k = 10 k = 10 k=10 (10个单位)。代入公式,我们得到:

H ( 3 , 10 ) = C ( 3 + 10 − 1 , 10 ) = C ( 12 , 10 ) = 12 ! 10 ! ( 12 − 10 ) ! = 12 ! 10 ! 2 ! = 12 × 11 2 × 1 = 66 H(3, 10) = C(3 + 10 - 1, 10) = C(12, 10) = \frac{12!}{10!(12 - 10)!} = \frac{12!}{10!2!} = \frac{12 \times 11}{2 \times 1} = 66 H(3,10)=C(3+101,10)=C(12,10)=10!(1210)!12!=10!2!12!=2×112×11=66

所以,总共有66种不同的投资方案。

好的,这里再给你出三道关于重复组合的题目。

4.2.3 饮料搭配

一家咖啡店提供3种饮料:咖啡、茶和热可可。一个顾客可以选择任意杯数的任意饮料,但总杯数必须是4杯。问有多少种不同的饮料搭配方式?

解答:

这个问题可以转化为从6个位置(4杯饮料 + 2个分隔符)中选择2个位置放置分隔符,以将这4杯饮料分成3组(每组代表一种饮料)。

我们可以使用重复组合的计算公式:

H ( n , k ) = C ( n + k − 1 , k ) = C ( n + k − 1 , n − 1 ) H(n, k) = C(n + k - 1, k) = C(n + k - 1, n - 1) H(n,k)=C(n+k1,k)=C(n+k1,n1)

其中, n n n 是可选元素的种类数(在这个例子中是3种饮料), k k k 是选择的总数(在这个例子中是4杯饮料)。

代入 n = 3 n = 3 n=3, k = 4 k = 4 k=4,我们得到:

H ( 3 , 4 ) = C ( 3 + 4 − 1 , 4 ) = C ( 6 , 4 ) = 6 ! 4 ! ( 6 − 4 ) ! = 6 × 5 2 × 1 = 15 H(3, 4) = C(3 + 4 - 1, 4) = C(6, 4) = \frac{6!}{4!(6-4)!} = \frac{6 \times 5}{2 \times 1} = 15 H(3,4)=C(3+41,4)=C(6,4)=4!(64)!6!=2×16×5=15

所以,总共有15种不同的饮料搭配方式。

4.2.4 Pizza配料

一家Pizza店提供5种配料:蘑菇、洋葱、青椒、香肠和额外芝士。顾客可以选择任意种配料,每种配料可以选择任意多份,但配料的总份数必须是6份。问顾客有多少种不同的配料选择方式?

解答:

这个问题可以转化为从10个位置(6份配料 + 4个分隔符)中选择4个位置放置分隔符,以将这6份配料分成5组(每组代表一种配料)。

我们可以使用重复组合的计算公式:

H ( n , k ) = C ( n + k − 1 , k ) = C ( n + k − 1 , n − 1 ) H(n, k) = C(n + k - 1, k) = C(n + k - 1, n - 1) H(n,k)=C(n+k1,k)=C(n+k1,n1)

其中, n n n 是可选元素的种类数(在这个例子中是5种配料), k k k 是选择的总数(在这个例子中是6份配料)。

代入 n = 5 n = 5 n=5, k = 6 k = 6 k=6,我们得到:

H ( 5 , 6 ) = C ( 5 + 6 − 1 , 6 ) = C ( 10 , 6 ) = 10 ! 6 ! ( 10 − 6 ) ! = 10 × 9 × 8 × 7 4 × 3 × 2 × 1 = 210 H(5, 6) = C(5 + 6 - 1, 6) = C(10, 6) = \frac{10!}{6!(10-6)!} = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} = 210 H(5,6)=C(5+61,6)=C(10,6)=6!(106)!10!=4×3×2×110×9×8×7=210

所以,顾客有210种不同的配料选择方式。

4.2.5 口罩颜色搭配

一位设计师正在设计一款彩色口罩,这款口罩由4个部分组成,每个部分可以染成红色、黄色、蓝色或绿色。设计师可以自由选择每个部分的颜色,且同一颜色可以重复使用。问这款口罩有多少种不同的颜色搭配方式?

解答:

这个问题可以转化为在4个位置(代表4个部分)中放置3个分隔符(代表4种颜色中的3种,因为4种颜色需要3个分隔符将它们分开),以将这4个部分分配给4种颜色。每种颜色分配到的部分数量可以是0,1,2,3或4。

我们可以使用重复组合的计算公式:

H ( n , k ) = C ( n + k − 1 , k ) = C ( n + k − 1 , n − 1 ) H(n, k) = C(n + k - 1, k) = C(n + k - 1, n - 1) H(n,k)=C(n+k1,k)=C(n+k1,n1)

其中, n n n 是可选元素的种类数(在这个例子中是4种颜色), k k k 是选择的总数(在这个例子中是4个部分)。

代入 n = 4 n = 4 n=4, k = 4 k = 4 k=4,我们得到:

H ( 4 , 4 ) = C ( 4 + 4 − 1 , 4 ) = C ( 7 , 4 ) = 7 ! 4 ! ( 7 − 4 ) ! = 7 × 6 × 5 3 × 2 × 1 = 35 H(4, 4) = C(4 + 4 - 1, 4) = C(7, 4) = \frac{7!}{4!(7-4)!} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35 H(4,4)=C(4+41,4)=C(7,4)=4!(74)!7!=3×2×17×6×5=35

所以,这款口罩有35种不同的颜色搭配方式。

这三个问题进一步展示了重复组合在不同情境下的应用,如饮料搭配、Pizza配料选择、产品设计等。在每个问题中,我们都运用了将重复组合转化为标准组合问题的思路,通过在选择的对象之间插入分隔符,将问题转化为从一定数量的位置中选择分隔符的位置。

5. 圆排列

好的,这里给你出两道关于圆排列的题目。

5.1 圆桌座位安排

8个人围坐在一张圆桌旁,问有多少种不同的座位安排方式?

解答:

首先,我们需要理解什么是圆排列。在圆排列中,我们认为旋转后的排列是相同的。例如,如果我们把8个人标记为1,2,3,4,5,6,7,8,那么排列1,2,3,4,5,6,7,8和排列2,3,4,5,6,7,8,1是相同的,因为第二个排列可以通过将第一个排列旋转一个位置得到。

现在,让我们来计算圆排列的数量。如果我们不考虑旋转,那么这就是一个普通的排列问题,总共有 8 ! 8! 8! 种排列方式。但是,由于圆排列认为旋转后的排列是相同的,所以我们需要将这个数除以旋转的数量。

一个圆排列可以旋转8次才回到原来的排列(包括不旋转,也就是旋转0次),所以我们需要将 8 ! 8! 8! 除以8。

因此,8个人围坐在一张圆桌旁的不同座位安排方式数为:

8 ! 8 = 40320 8 = 5040 \frac{8!}{8} = \frac{40320}{8} = 5040 88!=840320=5040

所以,总共有5040种不同的座位安排方式。

5.2 项链设计

一位珠宝设计师正在设计一款项链。这款项链由8颗宝石组成,其中3颗是红宝石,2颗是蓝宝石,2颗是绿宝石,1颗是钻石。问设计师可以设计出多少种不同的项链?

解答:

在这个问题中,我们需要注意两点:

  1. 项链是一个圆形的结构,所以这是一个圆排列问题。
  2. 有些宝石是相同的,所以这是一个有重复元素的圆排列问题。

对于有重复元素的圆排列,我们可以使用以下公式:

n ! r 1 ! × r 2 ! × . . . × r k ! × n \frac{n!}{r_1! \times r_2! \times ... \times r_k! \times n} r1!×r2!×...×rk!×nn!

其中, n n n 是总的元素数量, r 1 , r 2 , . . . , r k r_1, r_2, ..., r_k r1,r2,...,rk 是每种重复元素的数量。

在这个问题中:

  • 总的元素数量 n = 8 n = 8 n=8 (8颗宝石)
  • 红宝石的数量 r 1 = 3 r_1 = 3 r1=3
  • 蓝宝石的数量 r 2 = 2 r_2 = 2 r2=2
  • 绿宝石的数量 r 3 = 2 r_3 = 2 r3=2
  • 钻石的数量 r 4 = 1 r_4 = 1 r4=1

代入公式,我们得到:

8 ! 3 ! × 2 ! × 2 ! × 1 ! × 8 = 40320 48 = 840 \frac{8!}{3! \times 2! \times 2! \times 1! \times 8} = \frac{40320}{48} = 840 3!×2!×2!×1!×88!=4840320=840

所以,设计师可以设计出840种不同的项链。

5.3 圆形跑道比赛

在一场田径比赛中,8名运动员在一个圆形跑道上比赛。如果我们只关心运动员的相对位置,而不关心他们的出发位置,问有多少种不同的比赛结果?

解答:

在这个问题中,我们只关心运动员的相对位置,这意味着我们可以将任意一个运动员固定在第一个位置,然后考虑其他运动员的排列。

如果我们不考虑相对位置,那么这就是一个普通的排列问题,总共有 8 ! 8! 8! 种排列方式。但是,由于我们只关心相对位置,所以我们需要将第一个运动员固定,然后考虑其他7个运动员的排列。

其他7个运动员的排列是一个圆排列问题,因为我们认为旋转后的排列是相同的。根据圆排列的计算方法,7个运动员的圆排列数为:

7 ! 7 = 5040 7 = 720 \frac{7!}{7} = \frac{5040}{7} = 720 77!=75040=720

所以,总共有720种不同的比赛结果。

5.4 圆桌会议座位安排

在一个圆桌会议上,有5名男性和3名女性。如果要求男性和女性交替就座,问有多少种不同的座位安排方式?

解答:

在这个问题中,我们需要将男性和女性交替排列在一个圆桌旁。我们可以先考虑男性的座位,然后在男性之间插入女性。

首先,我们考虑男性的座位。这是一个圆排列问题,因为我们认为旋转后的排列是相同的。5名男性的圆排列数为:

5 ! 5 = 120 5 = 24 \frac{5!}{5} = \frac{120}{5} = 24 55!=5120=24

现在,我们考虑在男性之间插入女性。我们可以将其视为在5个空位(男性之间的空位)中选择3个空位插入女性。这是一个组合问题,可以用以下公式计算:

C ( 5 , 3 ) = 5 ! 3 ! ( 5 − 3 ) ! = 5 × 4 2 × 1 = 10 C(5,3) = \frac{5!}{3!(5-3)!} = \frac{5 \times 4}{2 \times 1} = 10 C(5,3)=3!(53)!5!=2×15×4=10

对于每一种女性的插入方式,我们还需要考虑女性的排列。这是一个圆排列问题,因为我们认为旋转后的排列是相同的。3名女性的圆排列数为:

3 ! 3 = 6 3 = 2 \frac{3!}{3} = \frac{6}{3} = 2 33!=36=2

根据乘法原理,总的座位安排方式数为男性的圆排列数乘以女性的插入方式数乘以女性的圆排列数:

24 × 10 × 2 = 480 24 \times 10 \times 2 = 480 24×10×2=480

所以,总共有480种不同的座位安排方式。

5.5 圆桌礼品分配

在一个圆桌上,摆放着8份礼品,其中3份是巧克力,2份是饼干,2份是水果,1份是蛋糕。如果我们认为旋转后的摆放方式是相同的,问有多少种不同的礼品摆放方式?

解答:

这个问题与项链设计问题(5.2)类似,都是有重复元素的圆排列问题。我们可以使用以下公式:

n ! r 1 ! × r 2 ! × . . . × r k ! × n \frac{n!}{r_1! \times r_2! \times ... \times r_k! \times n} r1!×r2!×...×rk!×nn!

其中, n n n 是总的元素数量, r 1 , r 2 , . . . , r k r_1, r_2, ..., r_k r1,r2,...,rk 是每种重复元素的数量。

在这个问题中:

  • 总的元素数量 n = 8 n = 8 n=8 (8份礼品)
  • 巧克力的数量 r 1 = 3 r_1 = 3 r1=3
  • 饼干的数量 r 2 = 2 r_2 = 2 r2=2
  • 水果的数量 r 3 = 2 r_3 = 2 r3=2
  • 蛋糕的数量 r 4 = 1 r_4 = 1 r4=1

代入公式,我们得到:

8 ! 3 ! × 2 ! × 2 ! × 1 ! × 8 = 40320 48 = 840 \frac{8!}{3! \times 2! \times 2! \times 1! \times 8} = \frac{40320}{48} = 840 3!×2!×2!×1!×88!=4840320=840

所以,总共有840种不同的礼品摆放方式。

这三个问题进一步展示了圆排列在不同情境下的应用,如比赛结果、座位安排、礼品摆放等。在每个问题中,我们都运用了圆排列的基本概念和计算方法,同时也结合了其他的组合学概念,如组合、乘法原理等。

特别地,在第二个问题(圆桌会议座位安排)中,我们看到了如何将一个复杂的问题分解为几个子问题,并运用不同的组合学工具来解决每个子问题。这种分解问题的思路在解决复杂的组合问题时非常有用。

通过练习这些问题,我们可以提高运用圆排列解决实际问题的能力,同时也加深了对圆排列及其相关概念的理解。这种能力和理解在许多领域,如概率论、图论、编码理论等,都有广泛的应用。

6. 隔板法

6.1 分配问题

有10个球,分配到3个盒子中,问有多少种不同的分配方式?

解答:

我们可以使用隔板法来解决这个问题。我们可以将这10个球排成一行,然后在球之间插入2个隔板,以将球分配到3个盒子中。

例如,如果我们有球球球|球球|球球球球球,那么这表示第一个盒子有3个球,第二个盒子有2个球,第三个盒子有5个球。

现在,问题转化为:我们有12个位置(10个球 + 2个隔板),我们需要从中选择2个位置插入隔板。这就是一个组合问题,可以用以下公式计算:

C ( 12 , 2 ) = 12 ! 2 ! ( 12 − 2 ) ! = 12 × 11 2 × 1 = 66 C(12,2) = \frac{12!}{2!(12-2)!} = \frac{12 \times 11}{2 \times 1} = 66 C(12,2)=2!(122)!12!=2×112×11=66

所以,总共有66种不同的分配方式。

6.2 字符串问题

给定字母A,B,C,D,E,问有多少种长度为8的字符串,要求每个字母至少出现一次?

解答:

我们可以使用隔板法来解决这个问题。我们可以先为每个字母预留一个位置,然后在剩下的3个位置中插入4个隔板,以确定每个字母出现的次数。

例如,如果我们有A|B|C|D|E,那么这表示每个字母都出现了一次。如果我们有A||BC|DE,那么这表示A出现了3次(因为有2个隔板在A后面),B和C各出现了1次,D和E各出现了2次。

现在,问题转化为:我们有7个位置(3个空位 + 4个隔板),我们需要从中选择3个位置插入空位。这就是一个组合问题,可以用以下公式计算:

C ( 7 , 3 ) = 7 ! 3 ! ( 7 − 3 ) ! = 7 × 6 × 5 3 × 2 × 1 = 35 C(7,3) = \frac{7!}{3!(7-3)!} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35 C(7,3)=3!(73)!7!=3×2×17×6×5=35

所以,总共有35种不同的字符串。

6.3 投资问题

一个投资者有10万元,打算投资到3个项目中。每个项目的投资金额必须是1万元的整数倍,且每个项目至少投资1万元。问有多少种不同的投资方案?

解答:

我们可以使用隔板法来解决这个问题。我们可以将这10万元看作10个1万元的单位,然后在这10个单位之间插入2个隔板,以确定每个项目的投资金额。

例如,如果我们有|||||||||||,那么这表示第一个项目投资4万元(因为有3个单位在第一个隔板前面),第二个项目投资6万元,第三个项目投资0万元。但是,这不满足每个项目至少投资1万元的条件。

为了满足这个条件,我们可以先为每个项目预留一个单位,然后在剩下的7个单位中插入2个隔板。这就转化为了一个组合问题,可以用以下公式计算:

C ( 9 , 2 ) = 9 ! 2 ! ( 9 − 2 ) ! = 9 × 8 2 × 1 = 36 C(9,2) = \frac{9!}{2!(9-2)!} = \frac{9 \times 8}{2 \times 1} = 36 C(9,2)=2!(92)!9!=2×19×8=36

所以,总共有36种不同的投资方案。

这三个问题展示了隔板法在不同情境下的应用,如分配问题、字符串问题、投资问题等。隔板法的核心思想是将问题转化为在一些对象之间插入隔板,从而将问题转化为一个组合问题。

在第一个问题中,我们直接在对象(球)之间插入隔板。在第二个和第三个问题中,我们先为每个对象(字母或项目)预留一个位置,然后在剩下的位置中插入隔板。这种预留位置的技巧在处理有约束条件的问题时非常有用。

好的,这里再给你出两道关于隔板法的题目。

6.4 分数划分

将分数1划分为5个正分数之和,问有多少种不同的划分方式?

解答:

这个问题可以转化为将4个隔板插入到10个单位中的问题。这里的10个单位代表将1划分为11份(10个间隔),4个隔板将这11份分为5组,每组代表一个正分数。

例如,如果我们有||||||||||,那么这表示将1划分为 2 11 + 4 11 + 0 11 + 0 11 + 5 11 \frac{2}{11} + \frac{4}{11} + \frac{0}{11} + \frac{0}{11} + \frac{5}{11} 112+114+110+110+115。注意,有些组可能是空的,代表一个为0的正分数。

现在,问题转化为在14个位置(10个单位 + 4个隔板)中选择4个位置插入隔板,这就是一个组合问题,可以用以下公式计算:

C ( 14 , 4 ) = 14 ! 4 ! ( 14 − 4 ) ! = 14 × 13 × 12 × 11 4 × 3 × 2 × 1 = 1001 C(14,4) = \frac{14!}{4!(14-4)!} = \frac{14 \times 13 \times 12 \times 11}{4 \times 3 \times 2 \times 1} = 1001 C(14,4)=4!(144)!14!=4×3×2×114×13×12×11=1001

所以,总共有1001种不同的分数划分方式。

6.5 项链设计

一位珠宝设计师正在设计一款项链。这款项链由14颗宝石组成,其中有4种不同的宝石,每种宝石至少使用一次。问有多少种不同的设计方案?

解答:

我们可以使用隔板法来解决这个问题。我们首先为每种宝石预留一个位置,然后在剩下的10个位置中插入3个隔板,以确定每种宝石的数量。

例如,如果我们有|||||||||,那么这表示第一种宝石使用1颗,第二种宝石使用5颗,第三种宝石使用4颗,第四种宝石使用4颗。

现在,问题转化为在13个位置(10个空位 + 3个隔板)中选择3个位置插入隔板,这就是一个组合问题,可以用以下公式计算:

C ( 13 , 3 ) = 13 ! 3 ! ( 13 − 3 ) ! = 13 × 12 × 11 3 × 2 × 1 = 286 C(13,3) = \frac{13!}{3!(13-3)!} = \frac{13 \times 12 \times 11}{3 \times 2 \times 1} = 286 C(13,3)=3!(133)!13!=3×2×113×12×11=286

所以,总共有286种不同的设计方案。

这两个问题进一步展示了隔板法的应用。

在第一个问题中,我们看到了如何使用隔板法来处理数的划分问题。通过将问题转化为在单位间插入隔板,我们可以方便地计算不同的划分方式。这种方法在解决其他类型的划分问题,如整数划分,时也非常有用。

在第二个问题中,我们再次看到了如何使用隔板法来处理有约束条件的问题。通过为每种宝石预留一个位置,我们确保了每种宝石都至少使用一次。这个技巧与我们在6.2和6.3中使用的技巧类似。

7. 错位排列(Derangement)

7.1 颜色卡片

小明有3张颜色卡片,分别是红色、蓝色和绿色。他把这些卡片随机排成一行。问这些卡片的排列顺序与原来的顺序完全不同的概率是多少?

解答:

首先,让我们来理解什么是完全不同的排列顺序。如果红色卡片不在第一个位置,蓝色卡片不在第二个位置,绿色卡片不在第三个位置,那么我们就说这个排列顺序与原来的顺序完全不同。

现在,让我们来数一数有多少种完全不同的排列顺序。

  1. 如果红色卡片在第二个位置,那么蓝色卡片必须在第三个位置,绿色卡片必须在第一个位置。这样的排列只有1种。

  2. 如果红色卡片在第三个位置,那么蓝色卡片必须在第一个位置,绿色卡片必须在第二个位置。这样的排列也只有1种。

所以,总共有2种完全不同的排列顺序。

接下来,让我们数一数总共有多少种排列顺序。

我们有3张卡片,我们可以把任何一张卡片放在第一个位置,然后我们有2张卡片可以放在第二个位置,最后只剩下1张卡片放在第三个位置。所以,总共有3 × 2 × 1 = 6种排列顺序。

现在,我们可以计算概率了。概率就是我们想要的结果的数量除以所有可能的结果的数量。在这个问题中,我们想要的结果是完全不同的排列顺序,有2种;所有可能的结果是所有的排列顺序,有6种。

所以,卡片的排列顺序与原来的顺序完全不同的概率是:

2 6 = 1 3 \frac{2}{6} = \frac{1}{3} 62=31

这意味着,如果小明随机排列这些卡片多次,大约每3次就会有1次卡片的排列顺序与原来的顺序完全不同。

7.2 图书摆放

小红有4本不同的书:数学书、语文书、英语书和科学书。她想把这些书摆在书架上,但不希望任何一本书放在原来的位置上。问小红有多少种不同的摆放方式?

解答:

让我们来数一数有多少种方式可以让所有的书都不放在原来的位置上。

  1. 数学书可以放在语文书、英语书或科学书的位置上,有3种选择。

  2. 假设数学书放在语文书的位置上。那么语文书就不能放在语文书的位置上了,它可以放在英语书或科学书的位置上,有2种选择。

  3. 假设语文书放在英语书的位置上。那么英语书就不能放在英语书的位置上了,它可以放在科学书的位置上,只有1种选择。

  4. 最后,科学书只能放在数学书的位置上,没有其他选择了。

所以,如果数学书放在语文书的位置上,总共有3 × 2 × 1 × 1 = 6种摆放方式。

同样地,如果数学书放在英语书的位置上,也有6种摆放方式;如果数学书放在科学书的位置上,还有6种摆放方式。

所以,总共有6 + 6 + 6 = 18种不同的摆放方式,可以让所有的书都不放在原来的位置上。

这个问题展示了如何通过分步计数的方法来解决错位排列问题。我们首先考虑第一本书有多少种放置方式,然后根据第一本书的位置,考虑第二本书有多少种放置方式,以此类推。最后,我们把所有的可能性加起来,就得到了最终的结果。

7.3 朋友圈游戏

四个朋友:小明、小红、小华、小李,正在玩一个游戏。他们每人写下自己的名字,然后把纸条折起来放在一个盒子里。游戏的规则是,每个人从盒子里随机抽取一个纸条,如果抽到自己的名字,就算输。问他们都没有抽到自己名字的概率是多少?

解答:

首先,让我们来看看总共有多少种抽取纸条的方式。

每个人都有4张纸条可以抽,所以总共有4 × 4 × 4 × 4 = 256种抽取方式。

现在,让我们来看看有多少种抽取方式可以让所有人都不抽到自己的名字。

  1. 小明可以抽到小红、小华或小李的名字,有3种选择。

  2. 假设小明抽到了小红的名字。那么小红就不能再抽到小红的名字了,她可以抽到小华或小李的名字,有2种选择。

  3. 假设小红抽到了小华的名字。那么小华就不能再抽到小华的名字了,他只能抽到小李的名字,只有1种选择。

  4. 最后,小李只能抽到小明的名字,没有其他选择了。

所以,如果小明抽到了小红的名字,总共有3 × 2 × 1 × 1 = 6种抽取方式,可以让所有人都不抽到自己的名字。

同样地,如果小明抽到了小华的名字,也有6种抽取方式;如果小明抽到了小李的名字,还有6种抽取方式。

所以,总共有6 + 6 + 6 = 18种抽取方式,可以让所有人都不抽到自己的名字。

现在,我们可以计算概率了。概率就是我们想要的结果的数量除以所有可能的结果的数量。在这个问题中,我们想要的结果是所有人都不抽到自己名字的抽取方式,有18种;所有可能的结果是所有的抽取方式,有256种。

所以,他们都没有抽到自己名字的概率是:

18 256 = 9 128 ≈ 0.0703 \frac{18}{256} = \frac{9}{128} \approx 0.0703 25618=12890.0703

这意味着,如果他们玩这个游戏多次,大约每14次就会有1次所有人都没有抽到自己的名字。
好的,这里再给你两道错位排列的问题,难度稍微提高一点,但仍然适合小学生。

7.4 彩球排列

有5个不同颜色的球:红、橙、黄、绿、蓝,按照这个顺序排成一行。现在,要求重新排列这些球,使得每个球的颜色都不同于其原来的左右相邻球的颜色。问有多少种不同的排列方式?

解答:

让我们先观察一下,如果我们把红球放在中间(第三个位置),那么就不可能满足条件了,因为红球原来的左右相邻球是橙球和黄球,而排列中的第二个位置和第四个位置必须放置橙球或黄球。

所以,我们只能考虑把橙球、黄球、绿球或蓝球放在中间。

  1. 如果橙球在中间,那么红球可以放在第二个位置或第四个位置,有2种选择。假设红球放在第二个位置,那么黄球必须放在第四个位置,绿球和蓝球则分别放在第一个位置和第五个位置,有2种放置方式。所以,如果橙球在中间,总共有2 × 2 = 4种排列方式。

  2. 如果黄球在中间,情况与橙球在中间类似,也有4种排列方式。

  3. 如果绿球在中间,那么黄球可以放在第二个位置或第四个位置,有2种选择。假设黄球放在第二个位置,那么橙球必须放在第四个位置,红球和蓝球则分别放在第一个位置和第五个位置,有2种放置方式。所以,如果绿球在中间,总共有2 × 2 = 4种排列方式。

  4. 如果蓝球在中间,情况与绿球在中间类似,也有4种排列方式。

所以,总共有4 + 4 + 4 + 4 = 16种不同的排列方式,可以满足每个球的颜色都不同于其原来的左右相邻球的颜色。

这个问题需要仔细观察和分析,找出可能的排列方式,然后用分步计数的方法来得到最终的结果。它锻炼了学生的逻辑思维和计数能力。

7.5 选择礼物

有6个不同的礼物,要分给6个人,每人一个。如果要求每个人都不能得到原来打算给他的礼物,问有多少种不同的分配方式?

解答:

这是一个典型的错排问题,我们需要计算6个元素的错排数。让我们用递归的方法来解决这个问题。

我们用 ! n !n !n 表示 n n n 个元素的错排数。

n = 1 n = 1 n=1 时,只有1个元素,不可能实现错排,所以 ! 1 = 0 !1 = 0 !1=0

n = 2 n = 2 n=2 时,有2个元素,只有1种错排方式,所以 ! 2 = 1 !2 = 1 !2=1

n > 2 n > 2 n>2 时,我们可以这样考虑:

  1. 我们先将第一个礼物分给第二个人。那么,剩下的 n − 1 n-1 n1 个礼物和 n − 1 n-1 n1 个人就形成了一个 n − 1 n-1 n1 的错排问题。这部分的错排数是 ! ( n − 1 ) !(n-1) !(n1)

  2. 或者,我们先将第一个礼物分给第三个人或第四个人或…或第 n n n 个人。无论哪种情况,剩下的 n − 1 n-1 n1 个礼物和 n − 1 n-1 n1 个人中,总有一个人会得到原来打算给第一个人的礼物。为了形成错排,我们需要让这个人得到第二个人的礼物,然后再在剩下的 n − 2 n-2 n2 个礼物和 n − 2 n-2 n2 个人中进行错排。这部分的错排数是 ( n − 1 ) × ! ( n − 2 ) (n-1) \times !(n-2) (n1)×!(n2)

所以,我们得到了递归公式:

! n = ! ( n − 1 ) + ( n − 1 ) × ! ( n − 2 ) !n = !(n-1) + (n-1) \times !(n-2) !n=!(n1)+(n1)×!(n2)

现在,让我们计算 ! 6 !6 !6:

! 6 = ! 5 + 5 × ! 4 !6 = !5 + 5 \times !4 !6=!5+5×!4

= ( ! 4 + 4 × ! 3 ) + 5 × ( ! 3 + 3 × ! 2 ) = (!4 + 4 \times !3) + 5 \times (!3 + 3 \times !2) =(!4+4×!3)+5×(!3+3×!2)

= ( ( ! 3 + 3 × ! 2 ) + 4 × ( ! 2 + 2 × ! 1 ) ) + 5 × ( ( ! 2 + 2 × ! 1 ) + 3 × ! 2 ) = ((!3 + 3 \times !2) + 4 \times (!2 + 2 \times !1)) + 5 \times ((!2 + 2 \times !1) + 3 \times !2) =((!3+3×!2)+4×(!2+2×!1))+5×((!2+2×!1)+3×!2)

= ( ( ( ! 2 + 2 × ! 1 ) + 3 × ! 2 ) + 4 × ( 1 + 2 × 0 ) ) + 5 × ( ( 1 + 2 × 0 ) + 3 × 1 ) = (((!2 + 2 \times !1) + 3 \times !2) + 4 \times (1 + 2 \times 0)) + 5 \times ((1 + 2 \times 0) + 3 \times 1) =(((!2+2×!1)+3×!2)+4×(1+2×0))+5×((1+2×0)+3×1)

= ( ( ( 1 + 2 × 0 ) + 3 × 1 ) + 4 × ( 1 + 0 ) ) + 5 × ( 1 + 3 ) = (((1 + 2 \times 0) + 3 \times 1) + 4 \times (1 + 0)) + 5 \times (1 + 3) =(((1+2×0)+3×1)+4×(1+0))+5×(1+3)

= ( ( 1 + 3 ) + 4 × 1 ) + 5 × 4 = ((1 + 3) + 4 \times 1) + 5 \times 4 =((1+3)+4×1)+5×4

= ( 4 + 4 ) + 20 = (4 + 4) + 20 =(4+4)+20

= 8 + 20 = 8 + 20 =8+20

= 28 = 28 =28

所以,有28种不同的分配方式,可以满足每个人都不能得到原来打算给他的礼物。

8. 条件限制的排列组合

好的,这里给你出两道有条件限制的排列组合问题。

8.1 字母排列

有7个字母:A, B, C, D, E, F, G。要求将这些字母排成一行,且字母A必须在字母B的左边,字母C必须在字母D的右边。问有多少种不同的排列方式?

解答:

我们可以把这个问题分解成几个步骤:

  1. 先考虑字母A和B。为了满足A必须在B的左边,我们可以把A和B看作一个整体。这个整体在排列中有6种放置方式(因为除了A和B,还有5个字母)。

  2. 对于每种A和B的放置方式,我们再考虑字母C和D。同样地,为了满足C必须在D的右边,我们可以把C和D看作一个整体。这个整体在除了A和B的位置外,还有5种放置方式。

  3. 现在,我们已经确定了A和B的位置,以及C和D的位置。剩下的3个字母(E, F, G)可以任意排列,有3! = 6种排列方式。

  4. 最后,我们还需要考虑A和B的相对顺序,以及C和D的相对顺序。对于A和B,只有1种相对顺序(A在B的左边);同样地,对于C和D,也只有1种相对顺序(C在D的右边)。

根据乘法原理,总的排列方式数为:

6 × 5 × 6 × 1 × 1 = 180

所以,有180种不同的排列方式满足条件。

这个问题虽然有条件限制,但我们可以通过将有关联的元素看作一个整体,然后运用乘法原理,将问题分解为几个独立的子问题。这种思路在解决有条件限制的排列组合问题时非常有用。

8.2 颜色球排列

有4个红球,3个白球,2个蓝球。要求将这些球排成一行,且任意两个蓝球不能相邻。问有多少种不同的排列方式?

解答:

这个问题可以用"隔板法"来解决。我们可以将7个非蓝球(4个红球和3个白球)看作7个隔板,然后考虑如何在这些隔板中插入2个蓝球。

为了满足任意两个蓝球不相邻的条件,我们需要保证每个蓝球的左右都有至少一个非蓝球(隔板)。我们可以这样插入蓝球:

  1. 先在7个隔板中选择2个,作为蓝球的位置。这可以看作是从8个位置(7个隔板加上最左端)中选择2个位置的组合问题,有C(8, 2) = 28种选择方式。

  2. 对于每种蓝球的插入方式,我们还需要考虑非蓝球(红球和白球)的排列方式。这是一个排列问题,有P(7, 7) = 7! = 5040种排列方式。

根据乘法原理,总的排列方式数为:

28 × 5040 = 141120

所以,有141120种不同的排列方式满足条件。
好的,这里再给你三道有条件限制的排列组合问题。

8.3 数字排列

从数字1到9中选择5个数字,组成一个5位数。要求这个5位数中不能有连续的奇数或连续的偶数。问有多少种不同的选择方式?

解答:

这个问题可以用"分类计数"的方法来解决。我们可以将5个数字的选择分为以下几种情况:

  1. 5个数字中有3个奇数和2个偶数。为了避免连续的奇数或偶数,我们必须将奇数和偶数交替排列。有两种交替方式:OEOEO和EOEOE。

    • 对于OEOEO,我们有C(5, 3) = 10种方式选择奇数,C(4, 2) = 6种方式选择偶数。然后,我们有3!种方式排列奇数,2!种方式排列偶数。所以,这部分的选择方式有10 × 6 × 3! × 2! = 720种。
    • 对于EOEOE,同理可得这部分的选择方式也有720种。
  2. 5个数字中有2个奇数和3个偶数。同样地,我们必须将奇数和偶数交替排列。有两种交替方式:OEOEO和EOEOE。

    • 对于OEOEO,我们有C(5, 2) = 10种方式选择奇数,C(4, 3) = 4种方式选择偶数。然后,我们有2!种方式排列奇数,3!种方式排列偶数。所以,这部分的选择方式有10 × 4 × 2! × 3! = 480种。
    • 对于EOEOE,同理可得这部分的选择方式也有480种。

根据加法原理,总的选择方式数为:

720 + 720 + 480 + 480 = 2400

所以,有2400种不同的选择方式满足条件。

这个问题展示了如何运用分类计数的方法来解决有条件限制的选择问题。通过将问题分成几种不同的情况,并对每种情况分别进行计数,我们可以避免遗漏或重复计数,从而得到正确的结果。

8.4 字母选择

有8个字母:A, B, C, D, E, F, G, H。从中选择4个字母组成一个字母序列,要求序列中不能同时包含字母A和字母B。问有多少种不同的选择方式?

解答:

这个问题可以用"逆向思维"来解决。与其直接计算满足条件的选择方式数,我们可以先计算所有的选择方式数,然后减去不满足条件的选择方式数。

  1. 所有的选择方式数:从8个字母中选择4个,有C(8, 4) = 70种选择方式。

  2. 不满足条件的选择方式数:如果一个字母序列同时包含字母A和字母B,那么我们可以先选择字母A和字母B,然后从剩下的6个字母中选择2个。所以,这部分的选择方式数为C(6, 2) = 15种。

因此,满足条件的选择方式数为:

70 - 15 = 55

所以,有55种不同的选择方式满足条件。

这个问题展示了如何运用逆向思维来解决有条件限制的组合问题。有时候,直接计算满足条件的组合数可能比较困难,但是计算不满足条件的组合数可能相对容易。通过将所有的组合数减去不满足条件的组合数,我们可以间接地得到满足条件的组合数。

8.5 圆桌座位

8个人围坐在一张圆桌旁,其中有4个男生和4个女生。要求任意两个男生不能相邻,也不能坐在相对的位置(即不能面对面)。问有多少种不同的座位安排方式?

解答:

这个问题可以用"插空法"来解决。我们可以先安排女生的座位,然后考虑在女生之间插入男生。

  1. 女生的座位安排:我们可以将4个女生看作一个整体,然后考虑这个整体在圆桌上的旋转排列。因为圆桌上的旋转排列被认为是同一种,所以女生的座位安排有(4-1)! = 3! = 6种。

  2. 男生的座位插入:对于每种女生的座位安排,我们需要在女生之间插入4个男生,且任意两个男生不能相邻。这可以看作是在5个位置(4个女生之间的位置加上女生整体的两端)中选择4个位置插入男生,有C(5, 4) = 5种插入方式。

  3. 男生的座位排列:对于每种男生的插入方式,我们还需要考虑男生的座位排列。因为任意两个男生不能相邻,所以男生的座位排列实际上是一个错排问题。4个男生的错排数为 ! 4 = 9 !4 = 9 !4=9

根据乘法原理,总的座位安排方式数为:

6 × 5 × 9 = 270

所以,有270种不同的座位安排方式满足条件。
好的,这里再给你两道有条件限制的排列组合问题。

8.6 字母排列

有4个字母:A, B, C, D。要求将这些字母排成一行,且字母A必须在字母B的左边或右边。问有多少种不同的排列方式?

解答:

这个问题可以用"分类计数"的方法来解决。我们可以将排列分为两种情况:字母A在字母B的左边,和字母A在字母B的右边。

  1. 字母A在字母B的左边:

    • 我们可以将A和B看作一个整体,然后考虑这个整体在排列中的位置。这个整体在排列中有3种放置方式(因为除了A和B,还有2个字母)。
    • 对于每种A和B的放置方式,我们还需要考虑C和D的排列方式。有2! = 2种排列方式。
    • 此外,我们还需要考虑A和B的相对顺序。因为A必须在B的左边,所以只有1种相对顺序。

    所以,这部分的排列方式数为:3 × 2 × 1 = 6种。

  2. 字母A在字母B的右边:

    • 同样地,我们可以将A和B看作一个整体,然后考虑这个整体在排列中的位置。这个整体在排列中有3种放置方式。
    • 对于每种A和B的放置方式,我们还需要考虑C和D的排列方式。有2! = 2种排列方式。
    • 此外,我们还需要考虑A和B的相对顺序。因为A必须在B的右边,所以只有1种相对顺序。

    所以,这部分的排列方式数也为:3 × 2 × 1 = 6种。

根据加法原理,总的排列方式数为:

6 + 6 = 12

所以,有12种不同的排列方式满足条件。

这个问题再次展示了分类计数的方法。通过将问题分为两种情况,并对每种情况分别进行计数,我们可以得到最终的结果。

8.7 数字选择

从数字1到9中选择4个数字组成一个4位数。要求这个4位数中必须包含数字5,且数字5不能在千位上。问有多少种不同的选择方式?

解答:

这个问题可以用"逐步选择"的方法来解决。我们可以按照数字在4位数中的位置,逐步进行选择。

  1. 千位数的选择:因为数字5不能在千位上,所以千位数有8种选择方式(从剩下的8个数字中选择1个)。

  2. 数字5的位置选择:在剩下的3个位置(百位、十位、个位)中,我们需要选择1个位置放置数字5。有3种选择方式。

  3. 其他两个数字的选择:在剩下的7个数字(除了数字5和千位数)中,我们需要选择2个数字填入剩下的两个位置。有C(7, 2) = 21种选择方式。

  4. 其他两个数字的排列:对于每种其他两个数字的选择方式,我们还需要考虑这两个数字的排列方式。有2! = 2种排列方式。

根据乘法原理,总的选择方式数为:

8 × 3 × 21 × 2 = 1008

所以,有1008种不同的选择方式满足条件。

这个问题展示了逐步选择的方法。通过按照数字在4位数中的位置,逐步进行选择,我们可以将问题分解为几个简单的子问题。每个子问题可以用基本的排列组合方法解决,最终的结果可以通过乘法原理得到。

  • 9
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天秀信奥编程培训

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值