排列组合复习题型总结
一、特殊对象问题
- 有5人排成一列,其中甲不在第一的位置,有多少种排法?
解法一:预留第一个位置法
□ □ □ □ □ ↑ ↑ ↑ ↑ 乙丙丁戊 甲乙丙丁戊 甲乙丙丁戊 甲乙丙丁戊 甲乙丙丁戊 我们用甲、乙、丙、丁、戊来表示这5个人。
我们可以先将第一个位置留空,然后考虑剩下的4个位置。这4个位置可以用乙、丙、丁、戊填充。
剩下的4个位置中,我们可以先任意选择一个位置安排甲,有4种选择方式。
然后,除甲以外的其他4人(乙、丙、丁、戊)可以在剩余的4个位置(包括第一个位置)中任意排列,有 4 ! = 24 4!=24 4!=24种排列方式。
所以,总的排列方式数为:
4 × 4 ! = 4 × 24 = 96 4\times 4!=4\times 24=96 4×4!=4×24=96
解法二:插空法
乙 丙 丁 戊 □ ↑ □ ↑ □ ↑ □ ↑ 甲 甲 甲 甲 我们用甲、乙、丙、丁、戊来表示这5个人。
先不考虑甲,将其他4人(乙、丙、丁、戊)排成一排,他们有 4 ! = 24 4!=24 4!=24种排列方式。
然后,我们在这4人中间的空位以及最后一个空位插入甲,共有4个空位可以插入。
每种排列方式都对应4种插入方式,所以总的排列方式数为:
4 ! × 4 = 24 × 4 = 96 4!\times 4=24\times 4=96 4!×4=24×4=96
综上所述,有5人排成一列,其中甲不在第一的位置,有96种排法。
- 有5人排成一列,其中甲不能在第一,乙不能在最后,有多少种排法?
解题方法:先全排列再插空法
我们先将其中3人全排列,然后再依次插入剩下的2人。
步骤1:3人全排列
从剩下的3人(除去甲乙)可以全排列,有 3 ! = 6 3!=6 3!=6种排列方式。
□ □ □ 步骤2:插入甲
□ ↑ □ ↑ □ ↑ 甲 甲 甲 我们在3人中间的空位以及最后一个空位插入甲,共有3个空位可以插入。
因此,插入甲后的排列方式数为:
3 ! × 3 = 6 × 3 = 18 3!\times 3=6\times 3=18 3!×3=6×3=18
步骤3:插入乙
↑ □ ↑ □ ↑ □ 乙 甲 乙 甲 乙 甲 在插入甲后的排列中,我们再在甲所在位置的左边以及第一个位置插入乙,共有4个空位可以插入。
因此,最终的排列方式数为:
3 ! × 3 × 4 = 6 × 3 × 4 = 72 3!\times 3\times 4=6\times 3\times 4=72 3!×3×4=6×3×4=72
综上所述,有5人排成一列,其中甲不能在第一,乙不能在最后,有72种排法。
二、名额分配问题
- 有10个三好学生的名额分给3个班,要求每班至少有一个名额,怎么分?
解题方法:先分配必须的名额,再全排列剩余的名额
步骤1:先分配必须的名额
根据题意,每个班至少有一个名额,所以我们先给每个班分配一个名额。
班级 已分配名额 剩余名额 1 1 7 2 1 3 1 步骤2:全排列剩余的名额
剩余的7个名额可以任意分配给3个班,相当于将7个名额放入3个班中,这就是一个球与盒子的问题。我们可以使用隔板法来解决。
我们将7个名额看作7个球,3个班看作3个盒子。我们需要在7个球中间插入2个隔板,将球分成3组,每组球的数量就是对应班级分得的名额数。
例如:○○|○○○|○○,表示第一个班分得2个名额,第二个班分得3个名额,第三个班分得2个名额。
插入隔板的方案数为: C 7 + 3 − 1 3 − 1 = C 9 2 = 9 ! 2 ! ( 9 − 2 ) ! = 36 C_{7+3-1}^{3-1}=C_{9}^{2}=\frac{9!}{2!(9-2)!}=36 C7+3−13−1=C92=2!(9−2)!9!=36
因此,剩余的7个名额有36种分配方案。
步骤3:计算总方案数
由于在步骤1中,每个班已经分配了一个名额,所以总的方案数为:
36 × 1 × 1 × 1 = 36 36 \times 1 \times 1 \times 1 = 36 36×1×1×1=36
综上所述,将10个三好学生的名额分给3个班,要求每班至少有一个名额,共有36种分法。
假设有n个球,m个盒子,每个盒子至少要装一个球。
步骤:
- 先在每个盒子中放入一个球,剩余的球数为n-m;
- 剩余的n-m个球放入m个盒子的方案数为: C n − m + m − 1 m − 1 = C n − 1 m − 1 C_{n-m+m-1}^{m-1}=C_{n-1}^{m-1} Cn−m+m−1m−1=Cn−1m−1。
因此,这类问题的通用公式为:
C n − 1 m − 1 C_{n-1}^{m-1} Cn−1m−1
其中,
- n表示总的球数;
- m表示盒子数。
这个公式直接给出了满足条件的放球方案总数。之所以可以这样计算,是因为我们将m个盒子看作m-1个隔板,那么n个球和m-1个隔板一共有n+m-1个位置,我们从中选择m-1个位置放隔板,就相当于把n个球分成了m组,每组至少有一个球。这就转化为了一个组合数问题。
所以,在实际解题时,我们可以直接套用这个公式,而不需要再去详细列举每一步了。这个公式可以大大简化解题过程。
- 有7个三好学生的名额,分给3个班,怎么分?
解题思路:直接套用上面总结的通用公式。
已知:
- 总的名额数,即球数 n = 7
- 班级数,即盒子数 m = 3
根据通用公式:
C n − 1 m − 1 = C 7 − 1 3 − 1 = C 6 2 = 6 ! 2 ! ( 6 − 2 ) ! = 15 C_{n-1}^{m-1}=C_{7-1}^{3-1}=C_{6}^{2}=\frac{6!}{2!(6-2)!}=15 Cn−1m−1=C7−13−1=C62=2!(6−2)!6!=15
因此,有7个三好学生的名额分给3个班,共有15种分法。
具体的15种分法如下:
- (6, 1, 0) 第一班6个,第二班1个,第三班0个
- (5, 2, 0) 第一班5个,第二班2个,第三班0个
- (5, 1, 1) 第一班5个,第二班1个,第三班1个
- (4, 3, 0) 第一班4个,第二班3个,第三班0个
- (4, 2, 1) 第一班4个,第二班2个,第三班1个
- (4, 1, 2) 第一班4个,第二班1个,第三班2个
- (3, 4, 0) 第一班3个,第二班4个,第三班0个
- (3, 3, 1) 第一班3个,第二班3个,第三班1个
- (3, 2, 2) 第一班3个,第二班2个,第三班2个
- (3, 1, 3) 第一班3个,第二班1个,第三班3个
- (2, 5, 0) 第一班2个,第二班5个,第三班0个
- (2, 4, 1) 第一班2个,第二班4个,第三班1个
- (2, 3, 2) 第一班2个,第二班3个,第三班2个
- (2, 2, 3) 第一班2个,第二班2个,第三班3个
- (1, 6, 0) 第一班1个,第二班6个,第三班0个
假设有n个球,m个盒子,盒子可以为空。
解题方法:插板法
我们可以将n个球排成一排,然后在球与球之间插入m-1个隔板,将球分成m组。每组球的数量可以为0,1,2,…,n。这样,我们就将问题转化为了在n-1个空隙中插入m-1个隔板的问题。
插入隔板的方案数为组合数: C n − 1 m − 1 = ( n − 1 ) ! ( m − 1 ) ! ( n − m ) ! C_{n-1}^{m-1}=\frac{(n-1)!}{(m-1)!(n-m)!} Cn−1m−1=(m−1)!(n−m)!(n−1)!
因此,这类问题的通用公式为:
C n − 1 m − 1 = ( n − 1 ) ! ( m − 1 ) ! ( n − m ) ! C_{n-1}^{m-1}=\frac{(n-1)!}{(m-1)!(n-m)!} Cn−1m−1=(m−1)!(n−m)!(n−1)!
其中,
- n表示球的总数;
- m表示盒子的数量。
这个公式直接给出了满足条件的放球方案总数。它将问题转化为了一个经典的组合数问题,避免了列举所有方案的繁琐过程。
三、分组分配问题
- 有6本不同的书,平均分给甲乙丙三人,有多少种分法?
- 有6本不同的书,平均分为三组,有多少种分法?
- 有6本不同的书,分甲1本,乙2本,丙3本,有多少种分法?
- 有6本不同的书,分三组,一组1本,一组2本,一组3本,有多少分法?
- 有6本不同的书,分给三个人,一人1本,一人2本,一人3本,有多少种分法?
- 有9本不同分成三组,一组5本,另外两组各2本,有多少种分法?
- 有9本不同的书,分给甲乙均2本,丙5本,有多少种分法?
- 有9本不同的书,分给两人各2本,另一人5本,有多少种分法?
解题方法:捆绑法
四、相邻问题
- 8人排成一列,甲乙丙三人必须相邻,有多少种排法?
- 8人排成一列,甲乙两人必须相邻,且都不和丙相邻,有多少种排法?
- 一排8个座位,3人坐,5个空座位相邻,有多少种坐法?
- 一排8个座位,3人坐,其中恰有4个空座位相邻,有多少种坐法?
解题方法:插空法
五、不相邻问题
- 某人射击训练,8枪命中3枪,恰好没有任何2枪连续命中,有多少情况?
- 8人排成一列,甲乙丙三人不可相邻,有多少种排法?
- 8盏灯关掉3盏,不许关掉相邻的,也不许关掉两端,多少种方法?
- 某人射击训练,8枪命中3枪,恰好2枪连续命中,有多少种情况?
解题方法:先按双取出,再从各双分别取出一只,自然不成双
六、成双成对问题
- 从6双不同鞋子中取出4只,要求都不许成双,有多少种方法?
- 从6双不同鞋子中取出4只,要求恰好有一双,有多少种方法?
解题方法:问题中有两组对象,解决问题时要以不可重复使用的对象作为分步的标准(住店、投信、映射、冠亚军等)
七、可(不可)重复使用的对象
- 5人住3家店,有多少种住法?
- 若有4项冠军在3个人中产生,没有并列冠军,问有多少种不同的夺冠可能性。
- 一道数学选择题,有4个不同的选项,其中有且只有一个答案正确,一个学生解答这样的5道选择题,每道都做了选择,问至少有多少错误的情况。
- 一栋12层楼房备有电梯一部,第二层至第四层电梯不停,在一层有3人进了电梯,其中至少有1人要上12层,则他们到各层的可能情况共有多少种?
解题方法:常用穷举法、或用间接法,或用分步法(注意第二步的处理技巧)
八、我不能我问题
- 4人写4张卡片,自己不许拿自己的卡片,有多少拿法?
- 5人换位置,有多少种不同的换法?
- 现有甲,乙,丙,丁四个人的照片各一张,要让这四个人各看一张照片,而且甲乙丙都不能看自己的照片,问有几种不同的方案?
解题方法:常用分类的方法或者间接法
九、至多至少问题
你说得对,我们还需要考虑选出4名女生的情况。现在我来给出完整的解答。
- 从5个男生和4个女生,选出4人参加比赛,要求至少要有2名女生的选法有多少种?
解题思路:分别考虑选出2名女生、3名女生和4名女生的情况,然后将这三种情况的选法数相加。
求解步骤:
首先,我们来计算选出2名女生的选法数。
- 从4个女生中选出2个,有 C 4 2 C_4^2 C42种选法。
- 从5个男生中选出2个,有 C 5 2 C_5^2 C52种选法。
根据乘法原理,选出2名女生的选法数为: C 4 2 × C 5 2 = 6 × 10 = 60 C_4^2 × C_5^2 = 6 × 10 = 60 C42×C52=6×10=60
然后,我们来计算选出3名女生的选法数。
- 从4个女生中选出3个,有 C 4 3 C_4^3 C43种选法。
- 从5个男生中选出1个,有 C 5 1 C_5^1 C51种选法。
根据乘法原理,选出3名女生的选法数为: C 4 3 × C 5 1 = 4 × 5 = 20 C_4^3 × C_5^1 = 4 × 5 = 20 C43×C51=4×5=20
接下来,我们来计算选出4名女生的选法数。
从4个女生中选出4个,只有 C 4 4 = 1 C_4^4 = 1 C44=1种选法。
最后,我们将以上三个步骤的结果相加。
选出2名女生的选法数 + 选出3名女生的选法数 + 选出4名女生的选法数 = 60 + 20 + 1 = 81
综上所述,从5个男生和4个女生中选出4人参加比赛,要求至少要有2名女生,共有81种选法。
- 甲参加一次英语口语考试,已知在备选的10道题中,甲能答对其中的6道题,规定每次考试都从各选题中随机抽出3道题进行测试,至少答对2道题才算合格,求甲考试合格的情况有多少种?
解题思路:分别考虑甲答对2道题和甲答对3道题的情况,然后将这两种情况的选法数相加。
求解步骤:
首先,我们来计算甲答对2道题的情况数。
- 从甲能答对的6道题中选出2道题,有 C 6 2 C_6^2 C62种选法。
- 从甲不能答对的4道题中选出1道题,有 C 4 1 C_4^1 C41种选法。
根据乘法原理,甲答对2道题的情况数为: C 6 2 × C 4 1 = 15 × 4 = 60 C_6^2 × C_4^1 = 15 × 4 = 60 C62×C41=15×4=60
然后,我们来计算甲答对3道题的情况数。
从甲能答对的6道题中选出3道题,有 C 6 3 = 20 C_6^3 = 20 C63=20种选法。
最后,我们将以上两个步骤的结果相加。
甲答对2道题的情况数 + 甲答对3道题的情况数 = 60 + 20 = 80
综上所述,甲参加一次英语口语考试,在备选的10道题中,甲能答对其中的6道题,规定每次考试都从各选题中随机抽出3道题进行测试,至少答对2道题才算合格,甲考试合格的情况有80种。
- 5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有多少种。
解题思路:我们需要分别考虑入选的3名队员中有1名老队员和2名老队员的情况。对于每种情况,我们再考虑新队员的位置安排,确保1、2号中至少有1名新队员。最后,我们将所有情况的排法数相加。
求解步骤:
首先,我们来计算入选的3名队员中有1名老队员的排法数。
- 从2名老队员中选出1名,有 C 2 1 = 2 C_2^1 = 2 C21=2种选法。
- 从3名新队员中选出2名,有 C 3 2 = 3 C_3^2 = 3 C32=3种选法。
根据乘法原理,选出1名老队员和2名新队员的方法数为: 2 × 3 = 6 2 × 3 = 6 2×3=6
现在,我们需要考虑这6种选法中,新队员的位置安排。为了满足1、2号中至少有1名新队员,我们有以下三种安排方式:
- 新队员占据1、2号位置:有 A 2 2 = 2 A_2^2 = 2 A22=2种排列方式。
- 新队员占据1、3号位置:有 A 2 2 = 2 A_2^2 = 2 A22=2种排列方式。
- 新队员占据2、3号位置:有 A 2 2 = 2 A_2^2 = 2 A22=2种排列方式。
所以,入选的3名队员中有1名老队员的排法数为: 6 × ( 2 + 2 + 2 ) = 36 6 × (2 + 2 + 2) = 36 6×(2+2+2)=36
然后,我们来计算入选的3名队员中有2名老队员的排法数。
- 从2名老队员中选出2名,有 C 2 2 = 1 C_2^2 = 1 C22=1种选法。
- 从3名新队员中选出1名,有 C 3 1 = 3 C_3^1 = 3 C31=3种选法。
根据乘法原理,选出2名老队员和1名新队员的方法数为: 1 × 3 = 3 1 × 3 = 3 1×3=3
对于这3种选法,为了满足1、2号中至少有1名新队员,新队员只能占据1号或2号位置。所以,我们有以下两种安排方式:
- 新队员占据1号位置:有 A 1 1 = 1 A_1^1 = 1 A11=1种排列方式。
- 新队员占据2号位置:有 A 1 1 = 1 A_1^1 = 1 A11=1种排列方式。
所以,入选的3名队员中有2名老队员的排法数为: 3 × ( 1 + 1 ) = 6 3 × (1 + 1) = 6 3×(1+1)=6
最后,我们将以上两个步骤的结果相加。
入选的3名队员中有1名老队员的排法数 + 入选的3名队员中有2名老队员的排法数 = 36 + 6 = 42
综上所述,5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有42种。
解题方法:抓住一个特点进行分类,千万不要分类过多
十、交叉功能问题
- 10名翻译,有6人会英语,7人会德语,现需要英语、德语翻译各3人,共多少中选派方案?
解题思路:我们需要分别考虑英语和德语翻译的选派情况,然后根据乘法原理,将两种语言的选派方案数相乘。
求解步骤:
首先,我们来计算英语翻译的选派方案数。
从6名会英语的人中选出3人,有 C 6 3 = 20 C_6^3 = 20 C63=20种选法。
然后,我们来计算德语翻译的选派方案数。
从7名会德语的人中选出3人,有 C 7 3 = 35 C_7^3 = 35 C73=35种选法。
最后,我们根据乘法原理,将英语和德语翻译的选派方案数相乘。
英语翻译的选派方案数 × 德语翻译的选派方案数 = 20 × 35 = 700
综上所述,10名翻译,有6人会英语,7人会德语,现需要英语、德语翻译各3人,共有700种选派方案。
然而,这个解答并不完全正确。我们需要考虑一种特殊情况:有些翻译可能既会英语又会德语。如果我们简单地将英语和德语翻译的选派方案数相乘,会导致重复计算。
为了得到正确的答案,我们需要使用容斥原理。设A表示会英语的翻译集合,B表示会德语的翻译集合,我们需要计算 ∣ A ∪ B ∣ |A \cup B| ∣A∪B∣。
根据容斥原理, ∣ A ∪ B ∣ = ∣ A ∣ + ∣ B ∣ − ∣ A ∩ B ∣ |A \cup B| = |A| + |B| - |A \cap B| ∣A∪B∣=∣A∣+∣B∣−∣A∩B∣
∣ A ∣ |A| ∣A∣表示从6名会英语的人中选3人的方案数, ∣ A ∣ = C 6 3 = 20 |A| = C_6^3 = 20 ∣A∣=C63=20
∣ B ∣ |B| ∣B∣表示从7名会德语的人中选3人的方案数, ∣ B ∣ = C 7 3 = 35 |B| = C_7^3 = 35 ∣B∣=C73=35
∣ A ∩ B ∣ |A \cap B| ∣A∩B∣表示既会英语又会德语的人中选3人的方案数,这需要我们知道有多少人既会英语又会德语。题目没有直接给出这个信息,但我们可以推断出来。
我们知道总共有10名翻译,其中6人会英语,7人会德语。如果没有人既会英语又会德语,那么会英语和会德语的人加起来应该有6+7=13人,超过了总人数10人。所以一定有人既会英语又会德语。
设有x人既会英语又会德语,那么:6+7-x=10,解得x=3
所以, ∣ A ∩ B ∣ = C 3 3 = 1 |A \cap B| = C_3^3 = 1 ∣A∩B∣=C33=1
根据容斥原理, ∣ A ∪ B ∣ = ∣ A ∣ + ∣ B ∣ − ∣ A ∩ B ∣ = 20 + 35 − 1 = 54 |A \cup B| = |A| + |B| - |A \cap B| = 20 + 35 - 1 = 54 ∣A∪B∣=∣A∣+∣B∣−∣A∩B∣=20+35−1=54
因此,10名翻译,有6人会英语,7人会德语,现需要英语、德语翻译各3人,共有54种选派方案。
- 有11个工人,其中5人只会当钳工,4人只会当车工,还有2人既会当钳工又会当车工,现要选4人当钳工,4人当车工,共有多少选法?
解题思路:我们需要考虑两种情况:
- 2个既会当钳工又会当车工的人都当钳工;
- 2个既会当钳工又会当车工的人都当车工。
然后将这两种情况的选法相加。求解步骤:
首先,我们来计算2个既会当钳工又会当车工的人都当钳工的选法。
在这种情况下,我们需要从5个只会当钳工的人中选2人当钳工,有 C 5 2 = 10 C_5^2 = 10 C52=10种选法。
然后,我们需要从4个只会当车工的人中选4人当车工,只有1种选法。
所以,这种情况下的总选法为:10 × 1 = 10
然后,我们来计算2个既会当钳工又会当车工的人都当车工的选法。
在这种情况下,我们需要从5个只会当钳工的人中选4人当钳工,有 C 5 4 = 5 C_5^4 = 5 C54=5种选法。
然后,我们需要从4个只会当车工的人中选2人当车工,有 C 4 2 = 6 C_4^2 = 6 C42=6种选法。
所以,这种情况下的总选法为:5 × 6 = 30
最后,我们将以上两种情况的选法相加。
2个既会当钳工又会当车工的人都当钳工的选法 + 2个既会当钳工又会当车工的人都当车工的选法 = 10 + 30 = 40
因此,有11个工人,其中5人只会当钳工,4人只会当车工,还有2人既会当钳工又会当车工,现要选4人当钳工,4人当车工,共有40种选法。
- 某校共有10名同学在外语、数学竞赛中获奖,其中6人获外语奖,7人获数学奖,要从中选取外语,数学获奖者各3人参加决赛,有多少种不同选法?
十一、相对顺序固定问题
- 书架上6本不同的书,现在要放上去3本,但要保持原来6本的相对顺序不变,有多少种放法?
- 用1、2、3、4、5、6排成所有五位数中,个位数小于十位数,而且十位数小于百位数的有多少个?
- 用1、2、3、4、5、6排成所有五位数中,个位数小于十位数,而且十位数大于百位数的有多少个?
十二、集合关系、子集个数问题
-
设 A = { 1 , 2 , 3 , 4 , 5 } A=\{1,2,3,4,5\} A={1,2,3,4,5}, B = { 1 , 3 , 5 , 7 , 9 } B=\{1,3,5,7,9\} B={1,3,5,7,9},则 A ∪ B A \cup B A∪B的子集个数为______。
-
设 A = { 1 , 2 , 3 , 4 , 5 } A=\{1,2,3,4,5\} A={1,2,3,4,5}, B = { 1 , 3 , 5 , 7 , 9 } B=\{1,3,5,7,9\} B={1,3,5,7,9},则 A ∩ B A \cap B A∩B的子集个数为______。
-
一个由30个元素组成的集合,其子集的个数为______。
-
集合 A A A有 n n n个元素,集合 B B B有 m m m个元素,若 A ∩ B = ∅ A \cap B = \emptyset A∩B=∅,则 A ∪ B A \cup B A∪B的子集个数为______。
解题方法:利用集合的基本性质和公式,如:
- 集合 A A A的子集个数为 2 ∣ A ∣ 2^{|A|} 2∣A∣,其中 ∣ A ∣ |A| ∣A∣表示集合 A A A的元素个数
- 若 A ∩ B = ∅ A \cap B = \emptyset A∩B=∅,则 ∣ A ∪ B ∣ = ∣ A ∣ + ∣ B ∣ |A \cup B| = |A| + |B| ∣A∪B∣=∣A∣+∣B∣
- 若 A ⊆ B A \subseteq B A⊆B,则 A ∪ B = B A \cup B = B A∪B=B, A ∩ B = A A \cap B = A A∩B=A