排列组合加强习题

排列组合复习题型总结

一、特殊对象问题

  1. 有5人排成一列,其中甲不在第一的位置,有多少种排法?

解法一:预留第一个位置法

乙丙丁戊甲乙丙丁戊甲乙丙丁戊甲乙丙丁戊甲乙丙丁戊

我们用甲、乙、丙、丁、戊来表示这5个人。

我们可以先将第一个位置留空,然后考虑剩下的4个位置。这4个位置可以用乙、丙、丁、戊填充。

剩下的4个位置中,我们可以先任意选择一个位置安排甲,有4种选择方式。

然后,除甲以外的其他4人(乙、丙、丁、戊)可以在剩余的4个位置(包括第一个位置)中任意排列,有 4 ! = 24 4!=24 4!=24种排列方式。

所以,总的排列方式数为:

4 × 4 ! = 4 × 24 = 96 4\times 4!=4\times 24=96 4×4!=4×24=96


解法二:插空法

我们用甲、乙、丙、丁、戊来表示这5个人。

先不考虑甲,将其他4人(乙、丙、丁、戊)排成一排,他们有 4 ! = 24 4!=24 4!=24种排列方式。

然后,我们在这4人中间的空位以及最后一个空位插入甲,共有4个空位可以插入。

每种排列方式都对应4种插入方式,所以总的排列方式数为:

4 ! × 4 = 24 × 4 = 96 4!\times 4=24\times 4=96 4!×4=24×4=96

综上所述,有5人排成一列,其中甲不在第一的位置,有96种排法。

  1. 有5人排成一列,其中甲不能在第一,乙不能在最后,有多少种排法?

解题方法:先全排列再插空法

我们先将其中3人全排列,然后再依次插入剩下的2人。

步骤1:3人全排列

从剩下的3人(除去甲乙)可以全排列,有 3 ! = 6 3!=6 3!=6种排列方式。

步骤2:插入甲

我们在3人中间的空位以及最后一个空位插入甲,共有3个空位可以插入。

因此,插入甲后的排列方式数为:

3 ! × 3 = 6 × 3 = 18 3!\times 3=6\times 3=18 3!×3=6×3=18

步骤3:插入乙

在插入甲后的排列中,我们再在甲所在位置的左边以及第一个位置插入乙,共有4个空位可以插入。

因此,最终的排列方式数为:

3 ! × 3 × 4 = 6 × 3 × 4 = 72 3!\times 3\times 4=6\times 3\times 4=72 3!×3×4=6×3×4=72

综上所述,有5人排成一列,其中甲不能在第一,乙不能在最后,有72种排法。

二、名额分配问题

  1. 有10个三好学生的名额分给3个班,要求每班至少有一个名额,怎么分?

解题方法:先分配必须的名额,再全排列剩余的名额

步骤1:先分配必须的名额

根据题意,每个班至少有一个名额,所以我们先给每个班分配一个名额。

班级已分配名额剩余名额
117
21
31

步骤2:全排列剩余的名额

剩余的7个名额可以任意分配给3个班,相当于将7个名额放入3个班中,这就是一个球与盒子的问题。我们可以使用隔板法来解决。

我们将7个名额看作7个球,3个班看作3个盒子。我们需要在7个球中间插入2个隔板,将球分成3组,每组球的数量就是对应班级分得的名额数。

例如:○○|○○○|○○,表示第一个班分得2个名额,第二个班分得3个名额,第三个班分得2个名额。

插入隔板的方案数为: C 7 + 3 − 1 3 − 1 = C 9 2 = 9 ! 2 ! ( 9 − 2 ) ! = 36 C_{7+3-1}^{3-1}=C_{9}^{2}=\frac{9!}{2!(9-2)!}=36 C7+3131=C92=2!(92)!9!=36

因此,剩余的7个名额有36种分配方案。

步骤3:计算总方案数

由于在步骤1中,每个班已经分配了一个名额,所以总的方案数为:

36 × 1 × 1 × 1 = 36 36 \times 1 \times 1 \times 1 = 36 36×1×1×1=36

综上所述,将10个三好学生的名额分给3个班,要求每班至少有一个名额,共有36种分法。

假设有n个球,m个盒子,每个盒子至少要装一个球。

步骤:

  1. 先在每个盒子中放入一个球,剩余的球数为n-m;
  2. 剩余的n-m个球放入m个盒子的方案数为: C n − m + m − 1 m − 1 = C n − 1 m − 1 C_{n-m+m-1}^{m-1}=C_{n-1}^{m-1} Cnm+m1m1=Cn1m1

因此,这类问题的通用公式为:

C n − 1 m − 1 C_{n-1}^{m-1} Cn1m1

其中,

  • n表示总的球数;
  • m表示盒子数。

这个公式直接给出了满足条件的放球方案总数。之所以可以这样计算,是因为我们将m个盒子看作m-1个隔板,那么n个球和m-1个隔板一共有n+m-1个位置,我们从中选择m-1个位置放隔板,就相当于把n个球分成了m组,每组至少有一个球。这就转化为了一个组合数问题。

所以,在实际解题时,我们可以直接套用这个公式,而不需要再去详细列举每一步了。这个公式可以大大简化解题过程。

  1. 有7个三好学生的名额,分给3个班,怎么分?

解题思路:直接套用上面总结的通用公式。

已知:

  • 总的名额数,即球数 n = 7
  • 班级数,即盒子数 m = 3

根据通用公式:

C n − 1 m − 1 = C 7 − 1 3 − 1 = C 6 2 = 6 ! 2 ! ( 6 − 2 ) ! = 15 C_{n-1}^{m-1}=C_{7-1}^{3-1}=C_{6}^{2}=\frac{6!}{2!(6-2)!}=15 Cn1m1=C7131=C62=2!(62)!6!=15

因此,有7个三好学生的名额分给3个班,共有15种分法。

具体的15种分法如下:

  1. (6, 1, 0) 第一班6个,第二班1个,第三班0个
  2. (5, 2, 0) 第一班5个,第二班2个,第三班0个
  3. (5, 1, 1) 第一班5个,第二班1个,第三班1个
  4. (4, 3, 0) 第一班4个,第二班3个,第三班0个
  5. (4, 2, 1) 第一班4个,第二班2个,第三班1个
  6. (4, 1, 2) 第一班4个,第二班1个,第三班2个
  7. (3, 4, 0) 第一班3个,第二班4个,第三班0个
  8. (3, 3, 1) 第一班3个,第二班3个,第三班1个
  9. (3, 2, 2) 第一班3个,第二班2个,第三班2个
  10. (3, 1, 3) 第一班3个,第二班1个,第三班3个
  11. (2, 5, 0) 第一班2个,第二班5个,第三班0个
  12. (2, 4, 1) 第一班2个,第二班4个,第三班1个
  13. (2, 3, 2) 第一班2个,第二班3个,第三班2个
  14. (2, 2, 3) 第一班2个,第二班2个,第三班3个
  15. (1, 6, 0) 第一班1个,第二班6个,第三班0个

假设有n个球,m个盒子,盒子可以为空。

解题方法:插板法

我们可以将n个球排成一排,然后在球与球之间插入m-1个隔板,将球分成m组。每组球的数量可以为0,1,2,…,n。这样,我们就将问题转化为了在n-1个空隙中插入m-1个隔板的问题。

插入隔板的方案数为组合数: C n − 1 m − 1 = ( n − 1 ) ! ( m − 1 ) ! ( n − m ) ! C_{n-1}^{m-1}=\frac{(n-1)!}{(m-1)!(n-m)!} Cn1m1=(m1)!(nm)!(n1)!

因此,这类问题的通用公式为:

C n − 1 m − 1 = ( n − 1 ) ! ( m − 1 ) ! ( n − m ) ! C_{n-1}^{m-1}=\frac{(n-1)!}{(m-1)!(n-m)!} Cn1m1=(m1)!(nm)!(n1)!

其中,

  • n表示球的总数;
  • m表示盒子的数量。

这个公式直接给出了满足条件的放球方案总数。它将问题转化为了一个经典的组合数问题,避免了列举所有方案的繁琐过程。

三、分组分配问题

  1. 有6本不同的书,平均分给甲乙丙三人,有多少种分法?
  2. 有6本不同的书,平均分为三组,有多少种分法?
  3. 有6本不同的书,分甲1本,乙2本,丙3本,有多少种分法?
  4. 有6本不同的书,分三组,一组1本,一组2本,一组3本,有多少分法?
  5. 有6本不同的书,分给三个人,一人1本,一人2本,一人3本,有多少种分法?
  6. 有9本不同分成三组,一组5本,另外两组各2本,有多少种分法?
  7. 有9本不同的书,分给甲乙均2本,丙5本,有多少种分法?
  8. 有9本不同的书,分给两人各2本,另一人5本,有多少种分法?

解题方法:捆绑法

四、相邻问题

  1. 8人排成一列,甲乙丙三人必须相邻,有多少种排法?
  2. 8人排成一列,甲乙两人必须相邻,且都不和丙相邻,有多少种排法?
  3. 一排8个座位,3人坐,5个空座位相邻,有多少种坐法?
  4. 一排8个座位,3人坐,其中恰有4个空座位相邻,有多少种坐法?

解题方法:插空法

五、不相邻问题

  1. 某人射击训练,8枪命中3枪,恰好没有任何2枪连续命中,有多少情况?
  2. 8人排成一列,甲乙丙三人不可相邻,有多少种排法?
  3. 8盏灯关掉3盏,不许关掉相邻的,也不许关掉两端,多少种方法?
  4. 某人射击训练,8枪命中3枪,恰好2枪连续命中,有多少种情况?

解题方法:先按双取出,再从各双分别取出一只,自然不成双

六、成双成对问题

  1. 从6双不同鞋子中取出4只,要求都不许成双,有多少种方法?
  2. 从6双不同鞋子中取出4只,要求恰好有一双,有多少种方法?

解题方法:问题中有两组对象,解决问题时要以不可重复使用的对象作为分步的标准(住店、投信、映射、冠亚军等)

七、可(不可)重复使用的对象

  1. 5人住3家店,有多少种住法?
  2. 若有4项冠军在3个人中产生,没有并列冠军,问有多少种不同的夺冠可能性。
  3. 一道数学选择题,有4个不同的选项,其中有且只有一个答案正确,一个学生解答这样的5道选择题,每道都做了选择,问至少有多少错误的情况。
  4. 一栋12层楼房备有电梯一部,第二层至第四层电梯不停,在一层有3人进了电梯,其中至少有1人要上12层,则他们到各层的可能情况共有多少种?

解题方法:常用穷举法、或用间接法,或用分步法(注意第二步的处理技巧)

八、我不能我问题

  1. 4人写4张卡片,自己不许拿自己的卡片,有多少拿法?
  2. 5人换位置,有多少种不同的换法?
  3. 现有甲,乙,丙,丁四个人的照片各一张,要让这四个人各看一张照片,而且甲乙丙都不能看自己的照片,问有几种不同的方案?

解题方法:常用分类的方法或者间接法

九、至多至少问题

你说得对,我们还需要考虑选出4名女生的情况。现在我来给出完整的解答。

  1. 从5个男生和4个女生,选出4人参加比赛,要求至少要有2名女生的选法有多少种?

解题思路:分别考虑选出2名女生、3名女生和4名女生的情况,然后将这三种情况的选法数相加。

求解步骤:

  1. 首先,我们来计算选出2名女生的选法数。

    • 从4个女生中选出2个,有 C 4 2 C_4^2 C42种选法。
    • 从5个男生中选出2个,有 C 5 2 C_5^2 C52种选法。

    根据乘法原理,选出2名女生的选法数为: C 4 2 × C 5 2 = 6 × 10 = 60 C_4^2 × C_5^2 = 6 × 10 = 60 C42×C52=6×10=60

  2. 然后,我们来计算选出3名女生的选法数。

    • 从4个女生中选出3个,有 C 4 3 C_4^3 C43种选法。
    • 从5个男生中选出1个,有 C 5 1 C_5^1 C51种选法。

    根据乘法原理,选出3名女生的选法数为: C 4 3 × C 5 1 = 4 × 5 = 20 C_4^3 × C_5^1 = 4 × 5 = 20 C43×C51=4×5=20

  3. 接下来,我们来计算选出4名女生的选法数。

    从4个女生中选出4个,只有 C 4 4 = 1 C_4^4 = 1 C44=1种选法。

  4. 最后,我们将以上三个步骤的结果相加。

    选出2名女生的选法数 + 选出3名女生的选法数 + 选出4名女生的选法数 = 60 + 20 + 1 = 81

综上所述,从5个男生和4个女生中选出4人参加比赛,要求至少要有2名女生,共有81种选法。

  1. 甲参加一次英语口语考试,已知在备选的10道题中,甲能答对其中的6道题,规定每次考试都从各选题中随机抽出3道题进行测试,至少答对2道题才算合格,求甲考试合格的情况有多少种?

解题思路:分别考虑甲答对2道题和甲答对3道题的情况,然后将这两种情况的选法数相加。

求解步骤:

  1. 首先,我们来计算甲答对2道题的情况数。

    • 从甲能答对的6道题中选出2道题,有 C 6 2 C_6^2 C62种选法。
    • 从甲不能答对的4道题中选出1道题,有 C 4 1 C_4^1 C41种选法。

    根据乘法原理,甲答对2道题的情况数为: C 6 2 × C 4 1 = 15 × 4 = 60 C_6^2 × C_4^1 = 15 × 4 = 60 C62×C41=15×4=60

  2. 然后,我们来计算甲答对3道题的情况数。

    从甲能答对的6道题中选出3道题,有 C 6 3 = 20 C_6^3 = 20 C63=20种选法。

  3. 最后,我们将以上两个步骤的结果相加。

    甲答对2道题的情况数 + 甲答对3道题的情况数 = 60 + 20 = 80

综上所述,甲参加一次英语口语考试,在备选的10道题中,甲能答对其中的6道题,规定每次考试都从各选题中随机抽出3道题进行测试,至少答对2道题才算合格,甲考试合格的情况有80种。

  1. 5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有多少种。

解题思路:我们需要分别考虑入选的3名队员中有1名老队员和2名老队员的情况。对于每种情况,我们再考虑新队员的位置安排,确保1、2号中至少有1名新队员。最后,我们将所有情况的排法数相加。

求解步骤:

  1. 首先,我们来计算入选的3名队员中有1名老队员的排法数。

    • 从2名老队员中选出1名,有 C 2 1 = 2 C_2^1 = 2 C21=2种选法。
    • 从3名新队员中选出2名,有 C 3 2 = 3 C_3^2 = 3 C32=3种选法。

    根据乘法原理,选出1名老队员和2名新队员的方法数为: 2 × 3 = 6 2 × 3 = 6 2×3=6

    现在,我们需要考虑这6种选法中,新队员的位置安排。为了满足1、2号中至少有1名新队员,我们有以下三种安排方式:

    • 新队员占据1、2号位置:有 A 2 2 = 2 A_2^2 = 2 A22=2种排列方式。
    • 新队员占据1、3号位置:有 A 2 2 = 2 A_2^2 = 2 A22=2种排列方式。
    • 新队员占据2、3号位置:有 A 2 2 = 2 A_2^2 = 2 A22=2种排列方式。

    所以,入选的3名队员中有1名老队员的排法数为: 6 × ( 2 + 2 + 2 ) = 36 6 × (2 + 2 + 2) = 36 6×(2+2+2)=36

  2. 然后,我们来计算入选的3名队员中有2名老队员的排法数。

    • 从2名老队员中选出2名,有 C 2 2 = 1 C_2^2 = 1 C22=1种选法。
    • 从3名新队员中选出1名,有 C 3 1 = 3 C_3^1 = 3 C31=3种选法。

    根据乘法原理,选出2名老队员和1名新队员的方法数为: 1 × 3 = 3 1 × 3 = 3 1×3=3

    对于这3种选法,为了满足1、2号中至少有1名新队员,新队员只能占据1号或2号位置。所以,我们有以下两种安排方式:

    • 新队员占据1号位置:有 A 1 1 = 1 A_1^1 = 1 A11=1种排列方式。
    • 新队员占据2号位置:有 A 1 1 = 1 A_1^1 = 1 A11=1种排列方式。

    所以,入选的3名队员中有2名老队员的排法数为: 3 × ( 1 + 1 ) = 6 3 × (1 + 1) = 6 3×(1+1)=6

  3. 最后,我们将以上两个步骤的结果相加。

    入选的3名队员中有1名老队员的排法数 + 入选的3名队员中有2名老队员的排法数 = 36 + 6 = 42

综上所述,5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有42种。

解题方法:抓住一个特点进行分类,千万不要分类过多

十、交叉功能问题

  1. 10名翻译,有6人会英语,7人会德语,现需要英语、德语翻译各3人,共多少中选派方案?

解题思路:我们需要分别考虑英语和德语翻译的选派情况,然后根据乘法原理,将两种语言的选派方案数相乘。

求解步骤:

  1. 首先,我们来计算英语翻译的选派方案数。

    从6名会英语的人中选出3人,有 C 6 3 = 20 C_6^3 = 20 C63=20种选法。

  2. 然后,我们来计算德语翻译的选派方案数。

    从7名会德语的人中选出3人,有 C 7 3 = 35 C_7^3 = 35 C73=35种选法。

  3. 最后,我们根据乘法原理,将英语和德语翻译的选派方案数相乘。

    英语翻译的选派方案数 × 德语翻译的选派方案数 = 20 × 35 = 700

综上所述,10名翻译,有6人会英语,7人会德语,现需要英语、德语翻译各3人,共有700种选派方案。

然而,这个解答并不完全正确。我们需要考虑一种特殊情况:有些翻译可能既会英语又会德语。如果我们简单地将英语和德语翻译的选派方案数相乘,会导致重复计算。

为了得到正确的答案,我们需要使用容斥原理。设A表示会英语的翻译集合,B表示会德语的翻译集合,我们需要计算 ∣ A ∪ B ∣ |A \cup B| AB

根据容斥原理, ∣ A ∪ B ∣ = ∣ A ∣ + ∣ B ∣ − ∣ A ∩ B ∣ |A \cup B| = |A| + |B| - |A \cap B| AB=A+BAB

∣ A ∣ |A| A表示从6名会英语的人中选3人的方案数, ∣ A ∣ = C 6 3 = 20 |A| = C_6^3 = 20 A=C63=20

∣ B ∣ |B| B表示从7名会德语的人中选3人的方案数, ∣ B ∣ = C 7 3 = 35 |B| = C_7^3 = 35 B=C73=35

∣ A ∩ B ∣ |A \cap B| AB表示既会英语又会德语的人中选3人的方案数,这需要我们知道有多少人既会英语又会德语。题目没有直接给出这个信息,但我们可以推断出来。

我们知道总共有10名翻译,其中6人会英语,7人会德语。如果没有人既会英语又会德语,那么会英语和会德语的人加起来应该有6+7=13人,超过了总人数10人。所以一定有人既会英语又会德语。

设有x人既会英语又会德语,那么:6+7-x=10,解得x=3

所以, ∣ A ∩ B ∣ = C 3 3 = 1 |A \cap B| = C_3^3 = 1 AB=C33=1

根据容斥原理, ∣ A ∪ B ∣ = ∣ A ∣ + ∣ B ∣ − ∣ A ∩ B ∣ = 20 + 35 − 1 = 54 |A \cup B| = |A| + |B| - |A \cap B| = 20 + 35 - 1 = 54 AB=A+BAB=20+351=54

因此,10名翻译,有6人会英语,7人会德语,现需要英语、德语翻译各3人,共有54种选派方案。

  1. 有11个工人,其中5人只会当钳工,4人只会当车工,还有2人既会当钳工又会当车工,现要选4人当钳工,4人当车工,共有多少选法?

解题思路:我们需要考虑两种情况:

  1. 2个既会当钳工又会当车工的人都当钳工;
  2. 2个既会当钳工又会当车工的人都当车工。
    然后将这两种情况的选法相加。

求解步骤:

  1. 首先,我们来计算2个既会当钳工又会当车工的人都当钳工的选法。

    在这种情况下,我们需要从5个只会当钳工的人中选2人当钳工,有 C 5 2 = 10 C_5^2 = 10 C52=10种选法。

    然后,我们需要从4个只会当车工的人中选4人当车工,只有1种选法。

    所以,这种情况下的总选法为:10 × 1 = 10

  2. 然后,我们来计算2个既会当钳工又会当车工的人都当车工的选法。

    在这种情况下,我们需要从5个只会当钳工的人中选4人当钳工,有 C 5 4 = 5 C_5^4 = 5 C54=5种选法。

    然后,我们需要从4个只会当车工的人中选2人当车工,有 C 4 2 = 6 C_4^2 = 6 C42=6种选法。

    所以,这种情况下的总选法为:5 × 6 = 30

  3. 最后,我们将以上两种情况的选法相加。

    2个既会当钳工又会当车工的人都当钳工的选法 + 2个既会当钳工又会当车工的人都当车工的选法 = 10 + 30 = 40

因此,有11个工人,其中5人只会当钳工,4人只会当车工,还有2人既会当钳工又会当车工,现要选4人当钳工,4人当车工,共有40种选法。

  1. 某校共有10名同学在外语、数学竞赛中获奖,其中6人获外语奖,7人获数学奖,要从中选取外语,数学获奖者各3人参加决赛,有多少种不同选法?

十一、相对顺序固定问题

  1. 书架上6本不同的书,现在要放上去3本,但要保持原来6本的相对顺序不变,有多少种放法?
  2. 用1、2、3、4、5、6排成所有五位数中,个位数小于十位数,而且十位数小于百位数的有多少个?
  3. 用1、2、3、4、5、6排成所有五位数中,个位数小于十位数,而且十位数大于百位数的有多少个?

十二、集合关系、子集个数问题

  1. A = { 1 , 2 , 3 , 4 , 5 } A=\{1,2,3,4,5\} A={1,2,3,4,5} B = { 1 , 3 , 5 , 7 , 9 } B=\{1,3,5,7,9\} B={1,3,5,7,9},则 A ∪ B A \cup B AB的子集个数为______。

  2. A = { 1 , 2 , 3 , 4 , 5 } A=\{1,2,3,4,5\} A={1,2,3,4,5} B = { 1 , 3 , 5 , 7 , 9 } B=\{1,3,5,7,9\} B={1,3,5,7,9},则 A ∩ B A \cap B AB的子集个数为______。

  3. 一个由30个元素组成的集合,其子集的个数为______。

  4. 集合 A A A n n n个元素,集合 B B B m m m个元素,若 A ∩ B = ∅ A \cap B = \emptyset AB=,则 A ∪ B A \cup B AB的子集个数为______。

解题方法:利用集合的基本性质和公式,如:

  • 集合 A A A的子集个数为 2 ∣ A ∣ 2^{|A|} 2A,其中 ∣ A ∣ |A| A表示集合 A A A的元素个数
  • A ∩ B = ∅ A \cap B = \emptyset AB=,则 ∣ A ∪ B ∣ = ∣ A ∣ + ∣ B ∣ |A \cup B| = |A| + |B| AB=A+B
  • A ⊆ B A \subseteq B AB,则 A ∪ B = B A \cup B = B AB=B A ∩ B = A A \cap B = A AB=A
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天秀信奥编程培训

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值