图论算法 - 02邻接矩阵存储有向图

有向图的入度和出度计算

问题描述

在一个有向图中,节点的出度定义为从该节点出发的边的数量,入度定义为指向该节点的边的数量。给定一个有向图,请计算并输出图中每个节点的入度和出度。

输入格式

第一行包含两个整数 N 和 M,分别表示图的节点数和边数。(1 ≤ N ≤ 1000, 0 ≤ M ≤ N*(N-1))
接下来的 M 行,每行包含两个整数 u 和 v,表示一条从节点 u 指向节点 v 的有向边。(1 ≤ u, v ≤ N)

输出格式

输出 N 行,每行包含三个整数,分别是节点编号(从1到N)、该节点的入度和出度。

样例输入

5 7
1 2
1 3
2 3
2 4
3 5
4 2
5 4

样例输出

1 0 2
2 2 2
3 2 1
4 2 1
5 1 1

样例解释

  • 节点1:没有边指向它(入度0),有2条边从它出发(出度2)
  • 节点2:有2条边指向它(入度2),有2条边从它出发(出度2)
  • 节点3:有2条边指向它(入度2),有1条边从它出发(出度1)
  • 节点4:有2条边指向它(入度2),有1条边从它出发(出度1)
  • 节点5:有1条边指向它(入度1),有1条边从它出发(出度1)

注意事项

  1. 节点编号从1开始。
  2. 输入保证是一个简单有向图,即没有自环和重边。
  3. 如果一个节点没有入边或出边,其相应的入度或出度应为0。

提示

  1. 可以使用邻接矩阵来存储有向图的结构。
  2. 对于邻接矩阵中的每一行,计算其中1的个数即可得到该节点的出度。
  3. 对于邻接矩阵中的每一列,计算其中1的个数即可得到该节点的入度。

C++解析

#include <iostream>
#include <vector>
using namespace std;

typedef long long ll;

const ll MAXN = 1005; // 最大节点数

ll n, m; // n为节点数,m为边数
vector<vector<ll>> graph(MAXN, vector<ll>(MAXN, 0));

void addEdge(ll u, ll v) {
    graph[u][v] = 1;
}

void calculateAndPrintDegrees() {
    for (ll i = 1; i <= n; i++) {
        ll inDegree = 0, outDegree = 0;
        for (ll j = 1; j <= n; j++) {  // 修改这里:j <= n 而不是 j <= m
            outDegree += graph[i][j];
            inDegree += graph[j][i];
        }
        cout << i << " " << inDegree << " " << outDegree << endl;
    }
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    cin >> n >> m;
    
    for (ll i = 0; i < m; i++) {
        ll u, v;
        cin >> u >> v;
        addEdge(u, v);
    }

    calculateAndPrintDegrees();

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天秀信奥编程培训

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值