有向图的入度和出度计算
问题描述
在一个有向图中,节点的出度定义为从该节点出发的边的数量,入度定义为指向该节点的边的数量。给定一个有向图,请计算并输出图中每个节点的入度和出度。
输入格式
第一行包含两个整数 N 和 M,分别表示图的节点数和边数。(1 ≤ N ≤ 1000, 0 ≤ M ≤ N*(N-1))
接下来的 M 行,每行包含两个整数 u 和 v,表示一条从节点 u 指向节点 v 的有向边。(1 ≤ u, v ≤ N)
输出格式
输出 N 行,每行包含三个整数,分别是节点编号(从1到N)、该节点的入度和出度。
样例输入
5 7
1 2
1 3
2 3
2 4
3 5
4 2
5 4
样例输出
1 0 2
2 2 2
3 2 1
4 2 1
5 1 1
样例解释
- 节点1:没有边指向它(入度0),有2条边从它出发(出度2)
- 节点2:有2条边指向它(入度2),有2条边从它出发(出度2)
- 节点3:有2条边指向它(入度2),有1条边从它出发(出度1)
- 节点4:有2条边指向它(入度2),有1条边从它出发(出度1)
- 节点5:有1条边指向它(入度1),有1条边从它出发(出度1)
注意事项
- 节点编号从1开始。
- 输入保证是一个简单有向图,即没有自环和重边。
- 如果一个节点没有入边或出边,其相应的入度或出度应为0。
提示
- 可以使用邻接矩阵来存储有向图的结构。
- 对于邻接矩阵中的每一行,计算其中1的个数即可得到该节点的出度。
- 对于邻接矩阵中的每一列,计算其中1的个数即可得到该节点的入度。
C++解析
#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
const ll MAXN = 1005; // 最大节点数
ll n, m; // n为节点数,m为边数
vector<vector<ll>> graph(MAXN, vector<ll>(MAXN, 0));
void addEdge(ll u, ll v) {
graph[u][v] = 1;
}
void calculateAndPrintDegrees() {
for (ll i = 1; i <= n; i++) {
ll inDegree = 0, outDegree = 0;
for (ll j = 1; j <= n; j++) { // 修改这里:j <= n 而不是 j <= m
outDegree += graph[i][j];
inDegree += graph[j][i];
}
cout << i << " " << inDegree << " " << outDegree << endl;
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n >> m;
for (ll i = 0; i < m; i++) {
ll u, v;
cin >> u >> v;
addEdge(u, v);
}
calculateAndPrintDegrees();
return 0;
}