洛谷 P5788 【模板】单调栈(单调栈模板)

题目链接

原文链接

题目大意

找第 i 个元素之后第一个大于 a[ i ]​ 的元素的下标

题目思路

首先可以把题目思路转化一下。有n个人,每个人向右看,求她看到的第一个人。 如图

在这里插入图片描述

通过观察,我们会发现,在她后面的,比她矮的,一定会被她遮住。那么,这个点就没用了。而根据现实生活和刚才的推断,我们看到的

人肯定是一个比一个高的,而没看到的,留着也没用,直接扔了。那么,这就是符合单调性的。再看,那些没用的人什么时候扔掉?当然

是遇到比她高的人了。那么就可以一个一个地走掉,而且肯定是在已经判断过的人的前面(中间和后面的在之前就走掉了),所以就直接

从前面弹出。咦?这不就像一个栈吗?没错,这就是单调栈的实现方法。

归纳

注意是从后往前扫,而且栈中存入的是数组下标。

对于每个点:弹出栈顶比她小的元素,此时栈顶就是答案,然后加入这个元素

想一下,我们的每一个元素最多进栈/出栈一次,所以说时间复杂度 O(n);

代码

#include<cstdio>
#include<stack>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#define fi first
#define se second
#define debug printf("I am here\n");
using namespace std;
typedef long long ll;
const int maxn=3e6+5,inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
int n,a[maxn],ans[maxn];
stack<int> sta;
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
    }
    for(int i=n;i>=1;i--){
        while(!sta.empty()&&a[sta.top()]<=a[i]){
            sta.pop();
        }
        ans[i]=sta.empty()?0:sta.top();
        sta.push(i);
    }
    for(int i=1;i<=n;i++){
        printf("%d%c",ans[i],i==n?'\n':' ');
    }
    return 0;
}

而用STL用TLE,所以正解应该是用数组模拟stack,很容易模拟,因为是先进先出,只要有个数组和一个坐标top就行了

代码

#include<cstdio>
#include<stack>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#define fi first
#define se second
#define debug printf("I am here\n");
using namespace std;
typedef long long ll;
const int maxn=3e6+5,inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
int n,a[maxn],ans[maxn];
int sta[maxn];
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
    }
    int top=0;
    for(int i=n;i>=1;i--){
        while(top&&a[sta[top]]<=a[i]){
            top--;
        }
        ans[i]=(top==0?0:sta[top]);
        sta[++top]=i;
    }
    for(int i=1;i<=n;i++){
        printf("%d%c",ans[i],i==n?'\n':' ');
    }
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值