第23次CSP认证题解

这篇博客分享了作者在算法竞赛中的经验,包括数组推导、非零段划分问题的高效解决方案,以及脉冲神经网络的实现。作者详细解释了代码逻辑,并强调了优化空间使用和理解数据结构的重要性。此外,还介绍了动态规划和树链剖分等技术在解决特定问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是我第一次参加CSP,一共得了260分,100,70,70,20,0。这两天试着写一下题解,大家哪里看不懂直接留言问我就好。

第一题:数组推导(100分)

当时不是这么写的,当时建了三个数组,再写的时候发现没必要,记住上一个B的值就可以了,这样可以节省空间(虽然没太大必要)

#include <bits/stdc++.h>
#define For(i,n) for(int i=0;i<n;i++)

using namespace std;

int n;
int lastb,b;
int aMax;
int aMin;
int sumMax=0;
int sumMin=0;

int main() {
    scanf("%d",&n);
    int b;
    For(i,n){
        scanf("%d",&b);
        if(i==0){
            aMax = b;
            aMin = b;
        }
        else{
            if(b>lastb){
                aMax = b;
                aMin = b;
            }
            else if(b==lastb){
                aMax = b;
                aMin = 0;
            }
        }
        lastb=b;
        sumMax+=aMax;
        sumMin+=aMin;
    }
    printf("%d\n%d\n",sumMax,sumMin);
    return 0;
}

第二题:非零段划分(100分)

下面这段这是满分代码,花了我好长时间,基本上是重写了一遍。减小时间复杂度的方法是通过上一次的非零段划分情况来推算这次的情况。
最近感觉优先队列是个挺好用的东西,不过这题的重点不在优先队列。重点是c[i]和lastc[i]这两个数组,它们表示的都是第i个数是否已经变成0。lastc是上一次的c。还有一个比较细节的地方是我从其他博客里看来的。首先,优先队列里存的是元素值与位置的映射,细节就在于多往里存个(0,0)和(0,n+1),这样后续的处理就会更加方便。
大家看不懂优先队列的可以先把优先队列里的元素按顺序打印出来,应该就比较容易看懂了。
这题比较容易出错的点就是ans在什么时候加或减,if里的条件要写全,我一开始样例都对了,但就是爆0,后来自己写了个
5
1 2 1 2 1
的测试样例,才发现自己的if条件还有问题。

#include <bits/stdc++.h>

using namespace std;

int n;
int ans = 0;
int maxans = 0;
typedef pair<int, int> pii;
priority_queue<pii, vector<pii>, greater<pii>> Q;
bool lastc[500005];
bool c[500005];

int main() {
    int ai;
    scanf("%d", &n);
    Q.push(pii(0,0));
    for (int i = 1; i <= n; i++) {
        scanf("%d", &ai);
        Q.push(pii(ai, i));
    }
    Q.push(pii(0, n+1));
    memset(c, false, sizeof c);
    memset(lastc, false, sizeof c);
    pair<int, int> q = Q.top();
    Q.pop();
    int left = q.second;
    int right = q.second;
    while (!Q.empty()) {
        while (Q.top().first == q.first && !Q.empty()) {
            c[q.second] = true;
            if (q.second == Q.top().second - 1)
                ++right;
            else {
                if (left > 0 && !c[left - 1] && ((right < n+1 && !lastc[right + 1]) || right==n+1))
                    ++ans;
                if (right < n+1 && left > 0 && lastc[right + 1] && lastc[left - 1])
                    --ans;
                left = Q.top().second;
                right = Q.top().second;
            }
            q = Q.top();
            Q.pop();
        }
        c[q.second] = true;
        if (left > 0 && !c[left - 1] && ((right < n+1 && !lastc[right + 1]) || right==n+1))
            ++ans;
        if (right < n+1 && left > 0 && lastc[right + 1] && lastc[left - 1])
            --ans;
        if (maxans < ans)
            maxans = ans;
        //cout << q.first << " " << ans <<endl;
        if (!Q.empty()) {
            q = Q.top();
            Q.pop();
            left = q.second;
            right = q.second;
        }
        memcpy(lastc, c, sizeof c);
    }
    printf("%d", maxans);
    return 0;
}

第三题 脉冲神经网络(100分)

这个是满分代码,在自己改的基础上参照了其他博主的做法,对Dmax取模来节省空间。
传送门
在这个过程中我遇到一个问题,我按着和其他博主一样的思路写的代码就是超时,后来我把放在神经元结构体里的w数组拿出来就不超时了,
这告诉我们一个道理,数组容量大的时候不要放在结构体里面。。

关于G数组的作用,有人问到了,我解释一下
在这里插入图片描述

#include <bits/stdc++.h>

using namespace std;

static unsigned long nex = 1;

/* RAND_MAX assumed to be 32767 */
int myrand() {
    nex = nex * 1103515245 + 12345;
    return ((unsigned) (nex / 65536) % 32768);
}

int N, S, P, T;
double ct;
double maxv = -DBL_MAX;
double minv = DBL_MAX;
double v, u, a, b, c, d;
int maxtim = -INT_MAX;
int mintim = INT_MAX;
struct SJY {
    double v, u, a, b, c, d;
    int tim;
} sjy[1005];

double getww[1005][1005];
vector<int> G[2005];
struct TU {
    int s, t;
    double w;
    int D;
};
vector<TU> tu;
int r[1005];
int maxD=0;

int main() {
    int sjyn = 0;
    int RN;
    scanf("%d%d%d%d", &N, &S, &P, &T);
    scanf("%lf", &ct);
    while (true) {
        scanf("%d%lf%lf%lf%lf%lf%lf", &RN, &v, &u, &a, &b, &c, &d);
        while (RN--) {
            sjy[sjyn].v = v;
            sjy[sjyn].u = u;
            sjy[sjyn].a = a;
            sjy[sjyn].b = b;
            sjy[sjyn].c = c;
            sjy[sjyn].d = d;
            sjy[sjyn].tim = 0;
            sjyn++;
        }
        if (sjyn == N)
            break;
    }
    for (int i = 0; i < P; i++)
        scanf("%d", &r[i]);
    int s, t, D;
    double w;
    for (int i = 0; i < S; i++) {
        scanf("%d%d%lf%d", &s, &t, &w, &D);
        G[s].push_back(i);
        tu.push_back({s, t, w, D});
        if(D>maxD)
            maxD=D;
    }
    maxD++;
    for (int nowt = 1; nowt <= T; nowt++) {
        for (int j = 0; j < N; j++) {
            double v1 = sjy[j].v, u1 = sjy[j].u;
            sjy[j].v = v1 + ct * (0.04 * v1 * v1 + 5 * v1 + 140 - u1) + getww[nowt%maxD][j];
            sjy[j].u = u1 + ct * sjy[j].a * (sjy[j].b * v1 - u1);
            getww[nowt%maxD][j] = 0;
            if (sjy[j].v >= 30) {
                sjy[j].tim++;
                sjy[j].v = sjy[j].c;
                sjy[j].u += sjy[j].d;
                for (int ii = 0; ii < G[j].size(); ii++) {
                    TU tu1(tu[G[j][ii]]);
                    getww[(nowt+tu1.D)%maxD][tu1.t] += tu1.w;
                }
            }
        }

        for (int j = 0; j < P; j++) {
            if (r[j] > myrand()) {
                for (int ii = 0; ii < G[j + N].size(); ii++) {
                    TU tu1(tu[G[j + N][ii]]);
                    getww[(nowt+tu1.D)%maxD][tu1.t] += tu1.w;
                }
            }
        }
    }
    for(int j=0;j<N;j++){
        if (sjy[j].v > maxv)
            maxv = sjy[j].v;
        if (sjy[j].v < minv)
            minv = sjy[j].v;
        if (sjy[j].tim > maxtim)
            maxtim = sjy[j].tim;
        if (sjy[j].tim < mintim)
            mintim = sjy[j].tim;
    }
    printf("%.3f %.3f\n", minv, maxv);
    printf("%d %d", mintim, maxtim);

    return 0;
}

第四题 收集卡牌(100分)

参照另一博主(隔壁李叟)的做法写的,传送门
这其实是一道相对来说比较简单的的状压dp,但是自己推dp水平太差了。

#include <bits/stdc++.h>

using namespace std;

int n, k;
double p[17];
double dp[1 << 17][77];
bool d[1 << 17][77];

double dfs(int t, int sum, int val, double l) {
    if (val + (sum - val) / k >= n)
        return sum;
    if (d[t][sum])
        return dp[t][sum];
    for (int i = 0; i < n; i++) {
        if (!((t >> i) & 1)) {
            dp[t][sum] += p[i] * dfs(t | (1 << i), sum + 1, val + 1, l + p[i]);
        }
    }
    if (t) {
        dp[t][sum] += l * dfs(t, sum + 1, val, l);
    }
    d[t][sum] = true;
    return dp[t][sum];
}

int main() {
    scanf("%d%d", &n, &k);
    for (int i = 0; i < n; i++) {
        scanf("%lf", &p[i]);
    }
    printf("%.10lf", dfs(0, 0, 0, 0));
    return 0;
}

第五题 箱根山岳险天下(50分)

这题依然是看的其他人的题解,主要是参考的CSDN上另一位博主的代码,传送门
用到的知识是树链剖分线段树。
因为没有用LCT(动态树),所以只能拿50分。(异或操作强制在线,树链剖分要知道树的形态)。LCT目前我还没学,我上面发的那个博主写了,b站也有一个题解。大家可以自行搜索。

#include <bits/stdc++.h>

#define mid ((l+r)>>1)
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r

using namespace std;

typedef long long ll;

const int maxm = 300000 + 10;

struct req {
    ll type, x2, s, l, r, y2;

    req(ll type, ll x2, ll s, ll l, ll r, ll y2)
            : type(type), x2(x2), s(s), l(l), r(r), y2(y2) {}
};

vector<req> R;
ll m, p, T;
//ll e = 0, beg[maxm], nex[maxm], to[maxm];
ll dep[maxm], siz[maxm], fa[maxm], son[maxm];
ll id[maxm], top[maxm], cnt = 0;
ll sum[maxm << 2], lazy[maxm << 2];
ll now, res, tot = 0,rt;
ll A = 0;
vector<ll> edge[maxm];
vector<pair<ll, ll> > E[maxm];

//inline void add(ll x, ll y) {
//    to[++e] = y;
//    nex[e] = beg[x];
//    beg[x] = e;
//}

inline void dfs1(ll x) {//x当前节点,f父亲,deep深度
    siz[x] = 1;
    ll maxson = 0;

    for (ll y:edge[x]) {
//        ll y = to[i];
        if (y == fa[x])
            continue;
        dfs1(y);
        siz[x] += siz[y];
        if (siz[y] > maxson) {
            son[x] = y;
            maxson = siz[y];
        }
    }
}

inline void dfs2(ll x, ll topf) {//x当前节点,topf当前链的最顶端的节点
    id[x] = ++cnt;
    top[x] = topf;
    if (!son[x])
        return;
    dfs2(son[x], topf);
    for (ll y:edge[x]) {
//        ll y = to[i];
        if (y == fa[x] || y == son[x])
            continue;
        dfs2(y, y);
    }
}

inline void pushdown(ll rt) {
    if (lazy[rt] != 1) {
        lazy[rt << 1] = (lazy[rt] * lazy[rt << 1]) % p;
        lazy[rt << 1 | 1] = (lazy[rt] * lazy[rt << 1 | 1]) % p;

        sum[rt << 1] = (lazy[rt] * sum[rt << 1]) % p;
        sum[rt << 1 | 1] = (lazy[rt] * sum[rt << 1 | 1]) % p;
        lazy[rt] = 1;
    }
}

inline void insert(ll rt, ll l, ll r, ll v, ll y) {
    if (l == r) {
        sum[rt] = y;
        sum[rt] %= p;
        lazy[rt] = 1;
        return;
    } else {
        if (lazy[rt] != 1)
            pushdown(rt);
        if (v <= mid)
            insert(lson, v, y);
        if (v > mid)
            insert(rson, v, y);
        sum[rt] = (sum[rt << 1] + sum[rt << 1 | 1]) % p;
    }
}

inline void query(ll rt, ll l, ll r, ll L, ll R) {
    if (L <= l && r <= R) {
        res += sum[rt];
        res %= p;
        return;
    } else {
        if (lazy[rt] != 1)
            pushdown(rt);
        if (L <= mid)
            query(lson, L, R);
        if (R > mid)
            query(rson, L, R);
    }
}

inline void update(ll rt, ll l, ll r, ll L, ll R, ll k) {
    if (L <= l && r <= R) {
        lazy[rt] = (lazy[rt] * k) % p;
        sum[rt] = (sum[rt] * k) % p;
    } else {
        if (lazy[rt] != 1)pushdown(rt);
        if (L <= mid)update(lson, L, R, k);
        if (R > mid)update(rson, L, R, k);
        sum[rt] = (sum[rt << 1] + sum[rt << 1 | 1]) % p;
    }
}

inline ll qRange(ll x, ll y) {
    ll ans = 0;
    while (top[x] != top[y]) {
        if (dep[top[x]] < dep[top[y]])swap(x, y);
        res = 0;
        query(1, 1, tot, id[top[x]], id[x]);
        ans += res;
        ans %= p;
        x = fa[top[x]];
    }

    if (dep[x] > dep[y])swap(x, y);
    res = 0;
    query(1, 1, tot, id[x], id[y]);
    ans += res;
    return ans % p;
}

inline void updRange(ll x, ll y, ll k) {
    k %= p;
    while (top[x] != top[y]) {
        if (dep[top[x]] < dep[top[y]]) swap(x, y);
        update(1, 1, tot, id[top[x]], id[x], k);
        x = fa[top[x]];
    }
    if (dep[x] > dep[y]) swap(x, y);
    update(1, 1, tot, id[x], id[y], k);
}

inline ll find(ll x, ll y) {
    ll l = 0, r = E[x].size() - 1, ans = 0;
    while (l <= r) {
        ll mi = (l + r) >> 1;
        if (E[x][mi].first <= y) {
            ans = E[x][mi].second;
            l = mi + 1;
        } else
            r = mi - 1;
    }
    return ans;
}


int main() {
    ll type;
    scanf("%lld%lld%lld", &m, &p, &T);
    rt = now = 0;
    tot = 0;
    for (int i = 1; i <= m << 2; i++) {
        lazy[i] = 1;
        sum[i] = 0;
    }
    dep[0] = 0;
    for (ll t = 1, x2, y2, s, l, r; t <= m; t++) {
        scanf("%lld", &type);
        x2 = y2 = s = l = r = 0;
        if (type == 1) {
            scanf("%lld", &x2);
            if (x2 == 0) {
                now = fa[now];
            } else {
                s = ++tot;
                fa[tot] = now;
                dep[tot] = dep[now] + 1;
                edge[now].push_back(tot);
//                add(now, tot);
//                add(tot, now);
                E[dep[tot]].push_back({t, tot});
                now = tot;
            }
        } else if (type == 2) {
            scanf("%lld%lld%lld%lld", &s, &l, &r, &y2);
        } else if (type == 3) {
            scanf("%lld%lld%lld", &s, &l, &r);
        }
        R.push_back(req(type, x2, s, l, r, y2));
    }
    A = 0;
    tot++;
    dfs1(rt);
    dfs2(rt, rt);
    for (req re: R) {
        if (re.type == 1) {
            if (re.x2) {
                insert(1, 1, tot, id[re.s], re.x2 ^ A);
            }
        } else {
            ll x = find(re.l, re.s);
            ll y = find(re.r, re.s);
            if (re.type == 2) {
                updRange(x, y, re.y2 ^ A);
            } else {
                res = qRange(x, y);
                printf("%lld\n", res);
                if (T)
                    A = res;
            }
        }
    }
    return 0;
}

### 关于第33CSP认证考试题目的解析 对于第33CSP认证的具体考题及其解析,目前并未直接提及相关内容。然而,可以参考一些通用资源来获取类似的题目和解答方式。 #### 参考洛谷平台 洛谷是一个非常重要的在线编程学习和竞赛训练平台,在其中包含了大量关于 CSP 认证的历年真题以及对应的解析[^1]。可以通过访问该网站并搜索相关关键词找到所需的题目与答案。 #### 判断题示例分析 以一道典型的判断题为例进行说明: - **原题描述**: 输出不是`ì`,而是`ì`作为编号,list中的值,没有0。 - **正确选项**: 错误 此结论基于对列表索引机制的理解,即Python等语言中通常采用从零开始计数的方式存储数据结构内的元素位置关系[^2]。 #### 阅读理解型程序设计问题剖析 下面给出了一段涉及编码器(encoder)与解码器(decoder)功能实现的小例子: ```python encoder="CSPABDEFGHIKLMNOQRTUVWXYZ" decoder="DEAFGHIKLMNOPQCRSBTUVWXYZ" def encode(char): index=ord(char)-ord('A') return encoder[index] def decode(char): index=decoder.find(char) if(index!=-1): return chr(ord('A')+index) else: return '?' print(decode('T')) # 测试用例之一 ``` 上述代码片段展示了如何构建简单的字符映射规则来进行基本的信息隐藏操作。需要注意的是,当处理特定区间之外的数据时可能会引发异常情况或者不符合预期的结果[^3]。 --- ###
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RioWRLD

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值