数据挖掘实践(资金流入流出预测)—4.时间序列模型

写在开头
上一节介绍了时间序列分析这一在量化投资中广泛使用的优秀技术,本次将对其模型展开学习。
这会是一篇长更新的文章,因为还有许多知识我要去学习,并完善所发布的内容。

一、时间序列预测模型

1.1 时间序列分解

时间序列是指将同一统计量的数值按其发生的时间先后顺序排列而成的数列
• 常用按时间顺序排列的一组随机变量
	𝑋1, 𝑋2, ⋯ 𝑋𝑡, ⋯
表示一个随机事件的时间序列,简记为 {𝑋𝑡}

时间序列的各种变化都可以归纳成四大类因素的综合影响
例如:

• 长期趋势(trend):会导致序列出现明显的长期趋势
• 循环波动(circle):会导致序列呈现出周期性波动
• 季节性变化(season): 会导致序列呈现出和季节变化相关的稳定的 周期波动.
• 随机波动(immediate): 纯随机、与时间无关

• 季节变动视为一种特殊的循环波动

1.1.1 分解方法

可采用加法结构或乘法结构分解时间序列
• (1)加法模型:
𝒙𝒕 = 𝑻𝒕 + 𝑪𝒕 + 𝑺𝒕 + 𝑰𝒕
• (2)乘法模型: 𝒙𝒕 = 𝑻𝒕 × &
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ARIMA(自回归移动平均模型)是一种用于时间序列分析和预测的经典模型。在数据挖掘中,ARIMA模型被广泛应用于气温预测。 ARIMA模型有三个主要的参数:p、d和q。p表示自回归项(AR),即当前值与过去p个时刻的值之间的关系;d表示差分项(I),即进行d次差分以使时间序列变得平稳;q表示移动平均项(MA),即当前值与过去q个时刻的预测误差之间的关系。 在进行气温预测时,首先需要对时间序列数据进行分析和预处理,确保数据的平稳性。然后,可以通过查看自相关图(ACF)和偏自相关图(PACF)来确定ARIMA模型的参数。这些图可以帮助确定p、d和q的最优值。 一旦确定了ARIMA模型的参数,可以使用历史气温数据来拟合模型。拟合完成后,可以使用ARIMA模型生成未来一段时间的气温预测预测结果可以与实际观测值进行比较,评估模型的准确性。 ARIMA模型在气温预测中的应用有一定的局限性。气温受到许多因素的影响,包括季节性、长期趋势、天气变化等。ARIMA模型只考虑了时间序列自身的关系,对于这些外部因素无法很好地捕捉。因此,在进行气温预测时,还需要结合其他模型或方法,如回归模型、神经网络等,以提高预测的准确性。 总结来说,数据挖掘中的时间序列气温预测可以使用ARIMA模型。首先确定模型的参数,然后拟合模型,并生成未来一段时间的气温预测。但需要注意ARIMA模型的局限性,需要结合其他模型或方法来提高预测的准确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值