问题 1095: The 3n + 1 problem

**

题目概括

**
考虑以下算法来生成数字序列。以整数n开头。如果n为偶数,则除以2。如果n为奇数,则乘以3并加1。以新的n值重复此过程,在n = 1时终止。例如,将为n生成以下数字序列= 22:22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1据推测(但尚未证明),对于每个整数n,该算法将在n = 1处终止。尽管如此,猜想仍然适用于所有至少为1,000,000的整数。对于输入n,n的循环长度是所生成的数字的数量,直到1并包括1。在上面的示例中,循环长度22中的16是16。给定两个数字i和j,您将确定i和j之间所有数字(包括两个端点)的最大循环长度。
样例输入

1 10
100 200
201210
900 1000

样例输出

1 10 20
100200125
201 210 89
900 1000 174

#include<stdio.h>
int main()
{
	int a,b;
	while(scanf("%d %d",&a,&b)!=EOF)
	{
		printf("%d %d ",a,b);
		int num,temp,sum,max;
		if(a>b) {
			temp=a;a=b;b=temp;
		}
		for(int i=a;i<=b;i++)
		{
			sum=0;
			num=i;
			while(num!=1){
				if(num%2!=0)
					num=3*num+1;
		        else
		        	num=num/2;
		        sum++;
			}
			if(max<=sum)
			  max=sum;
		}
		printf("%d \n",max+1);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值