274. 移动服务

一个公司有三个移动服务员,最初分别在位置 1,2,3处。

如果某个位置(用一个整数表示)有一个请求,那么公司必须指派某名员工赶到那个地方去。

某一时刻只有一个员工能移动,且不允许在同样的位置出现两个员工。

从 p 到 q 移动一个员工,需要花费 c(p,q)。

这个函数不一定对称,但保证 c(p,p)=0。

给出 N 个请求,请求发生的位置分别为 p1∼pN。

公司必须按顺序依次满足所有请求,且过程中不能去其他额外的位置,目标是最小化公司花费,请你帮忙计算这个最小花费。

输入格式

第 11 行有两个整数 L,N,其中 L 是位置数量,N 是请求数量,每个位置从 1 到 L 编号。

第 2 至 L+1 行每行包含 L 个非负整数,第 i+1 行的第 j 个数表示 c(i,j),并且它小于 2000。

最后一行包含 N 个整数,是请求列表。

一开始三个服务员分别在位置 1,2,3。

输出格式

输出一个整数 M,表示最小花费。

数据范围

3≤L≤200,
1≤N≤1000

输入样例:

5 9
0 1 1 1 1
1 0 2 3 2
1 1 0 4 1
2 1 5 0 1
4 2 3 4 0
4 2 4 1 5 4 3 2 1

输出样例:

5

分析:
(DP,线性DP) O(NL2)
状态表示:

f[i][x][y]表示已经处理完前i个请求,且三个服务员分别在p[i], x, y的所有方案的集合;
f[i][x][y]的值是集合中所有方案的花费的最小值;
状态计算:
这里状态之间的拓扑关系比较特殊,f[i][x][y]所依赖的状态枚举起来不太方便,但f[i][x][y]被依赖的很容易枚举,只有3类:

位于p[i]的服务员出发前往p[i + 1],此时状态变成f[i + 1][x][y] = f[i][x][y] + w[p[i]][p[i + 1]];
位于x的服务员出发前往p[i + 1],此时状态变成f[i + 1][p[i]][y] = f[i][x][y] + w[x][p[i + 1]];
位于y的服务员出发前往p[i + 1],此时状态变成f[i + 1][x][p[i]] = f[i][x][y] + w[y][p[i + 1]];
最终答案从f[m][1...n][1...n]取最小值即可。

时间复杂度
共有 NL2个状态,计算每个状态需要 O(1)的计算量,因此总时间复杂度是 O(NL2)。

参考链接

代码如下:

#include <bits/stdc++.h>

using namespace std;
int c[210][210],p[1010],dp[1010][210][210];
int l,n;
int main()
{
    cin>>l>>n;
    for(int i=1;i<=l;i++)
        for(int j=1;j<=l;j++)
            cin>>c[i][j];

    for(int i=1;i<=n;i++)cin>>p[i];
    p[0]=3;
    memset(dp,0x3f,sizeof dp);
    dp[0][1][2]=0;
    for(int i=0;i<n;i++)
    {
        for(int x=1;x<=l;x++)
        {
            for(int y=1;y<=l;y++)
            {
                int z=p[i],v=dp[i][x][y];
                if(x==y||y==z||z==x)continue;
                int u=p[i+1];
                dp[i+1][x][y]=min(dp[i+1][x][y],v+c[z][u]);
                dp[i+1][z][y]=min(dp[i+1][z][y],v+c[x][u]);
                dp[i+1][x][z]=min(dp[i+1][x][z],v+c[y][u]);
            }
        }
    }
    int ans=1e9;
    for(int x=1;x<=l;x++)
    {
        for(int y=1;y<=l;y++)
        {
            ans=min(ans,dp[n][x][y]);
        }
    }
    cout<<ans;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值