196. 质数距离

给定两个整数 L和 U,你需要在闭区间 [L,U]内找到距离最接近的两个相邻质数 C1 和C2(即 C2−C1 是最小的),如果存在相同距离的其他相邻质数对,则输出第一对。

同时,你还需要找到距离最远的两个相邻质数 D1 和 D2(即 D1−D2 是最大的),如果存在相同距离的其他相邻质数对,则输出第一对。

输入格式

每行输入两个整数 L 和 U,其中 L 和 U 的差值不会超过 106。

输出格式

对于每个 L 和 U,输出一个结果,结果占一行。

结果包括距离最近的相邻质数对和距离最远的相邻质数对。(具体格式参照样例)

如果 L 和 U 之间不存在质数对,则输出 There are no adjacent primes.

数据范围

1≤L<U≤231−1

输入样例:

2 17
14 17

输出样例:

性质
性质1:若一个数n是一个合数,必然存在2个因子dd,ndnd,假设dd <= ndnd,则dd <= n√n,因此必然存在一个小于等于 n√n的因子

性质2:若x∈∈[L,R],且x是合数,则一定存在P <= 231−1−−−−−−√231−1 (< 50000),使得P能整除x,其中P < x.

步骤
1、找出1 ~ 231−1−−−−−−√231−1 (< 50000)中的所有质因子
2、对于1 ~ 50000 中每个质数P,将[L,R]中所有P的倍数筛掉(至少2倍)
找到大于等于L的最小的P的倍数P0P0,找下一个倍数时只需要+= P即可

参考链接

线性筛法: 

代码

void getprime()
{
    for(int i=2;i<=N;i++)
    {
        if(!st1[i]) prime[cnt++]=i;
        for(int j=0;prime[j]*i<=N;j++)
        {
            st1[i* prime[j]]=true;
            if(i% prime[j]==0) break;
        }
    }
}

整体代码:

#include <iostream>
#include <cstring>

using namespace std;
const int N=1e6+10;
int prime[N],p[N];
bool st[N],st1[N];
int cnt;
long long l,r;
void getprime()
{
    for(int i=2;i<=N;i++)
    {
        if(!st1[i]) prime[cnt++]=i;
        for(int j=0;prime[j]*i<=N;j++)
        {
            st1[i* prime[j]]=true;
            if(i% prime[j]==0) break;
        }
    }
}
int main()
{
    getprime();
    while(cin>>l>>r)
    {
        memset(st,0,sizeof st);
        for(int i=0;i<cnt;i++)
        {
            long long p=prime[i];

            for(long long j=max(2*p,(l+p-1)/p*p);j<=r;j+=p)
            {
                st[j-l]=true;
            }
        }
        int num=0;
        for(int i=0;i<=r-l;i++)
        {
            if(st[i]||i+l<=1)continue;
            p[num++]=i+l;
        }
        if(num<2)
        {
            cout<<"There are no adjacent primes."<<endl;
            continue;
        }
        int maxx=0,minn=1e6,id1,id2;
        for(int i=0;i<num-1;i++)
        {
            int tem=p[i+1]-p[i];
            if(tem<minn)minn=tem,id1=i;
            if(tem>maxx)maxx=tem,id2=i;
        }
        cout<<p[id1]<<","<<p[id1+1]<<" are closest, "<<p[id2]<<","<<p[id2+1]<<" are most distant."<<endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值