给定两个整数 L和 U,你需要在闭区间 [L,U]内找到距离最接近的两个相邻质数 C1 和C2(即 C2−C1 是最小的),如果存在相同距离的其他相邻质数对,则输出第一对。
同时,你还需要找到距离最远的两个相邻质数 D1 和 D2(即 D1−D2 是最大的),如果存在相同距离的其他相邻质数对,则输出第一对。
输入格式
每行输入两个整数 L 和 U,其中 L 和 U 的差值不会超过 106。
输出格式
对于每个 L 和 U,输出一个结果,结果占一行。
结果包括距离最近的相邻质数对和距离最远的相邻质数对。(具体格式参照样例)
如果 L 和 U 之间不存在质数对,则输出 There are no adjacent primes.
。
数据范围
1≤L<U≤231−1
输入样例:
2 17
14 17
输出样例:
性质
性质1:若一个数n是一个合数,必然存在2个因子dd,ndnd,假设dd <= ndnd,则dd <= n√n,因此必然存在一个小于等于 n√n的因子
性质2:若x∈∈[L,R],且x是合数,则一定存在P <= 231−1−−−−−−√231−1 (< 50000),使得P能整除x,其中P < x.
步骤
1、找出1 ~ 231−1−−−−−−√231−1 (< 50000)中的所有质因子
2、对于1 ~ 50000 中每个质数P,将[L,R]中所有P的倍数筛掉(至少2倍)
找到大于等于L的最小的P的倍数P0P0,找下一个倍数时只需要+= P即可
线性筛法:
代码
void getprime()
{
for(int i=2;i<=N;i++)
{
if(!st1[i]) prime[cnt++]=i;
for(int j=0;prime[j]*i<=N;j++)
{
st1[i* prime[j]]=true;
if(i% prime[j]==0) break;
}
}
}
整体代码:
#include <iostream>
#include <cstring>
using namespace std;
const int N=1e6+10;
int prime[N],p[N];
bool st[N],st1[N];
int cnt;
long long l,r;
void getprime()
{
for(int i=2;i<=N;i++)
{
if(!st1[i]) prime[cnt++]=i;
for(int j=0;prime[j]*i<=N;j++)
{
st1[i* prime[j]]=true;
if(i% prime[j]==0) break;
}
}
}
int main()
{
getprime();
while(cin>>l>>r)
{
memset(st,0,sizeof st);
for(int i=0;i<cnt;i++)
{
long long p=prime[i];
for(long long j=max(2*p,(l+p-1)/p*p);j<=r;j+=p)
{
st[j-l]=true;
}
}
int num=0;
for(int i=0;i<=r-l;i++)
{
if(st[i]||i+l<=1)continue;
p[num++]=i+l;
}
if(num<2)
{
cout<<"There are no adjacent primes."<<endl;
continue;
}
int maxx=0,minn=1e6,id1,id2;
for(int i=0;i<num-1;i++)
{
int tem=p[i+1]-p[i];
if(tem<minn)minn=tem,id1=i;
if(tem>maxx)maxx=tem,id2=i;
}
cout<<p[id1]<<","<<p[id1+1]<<" are closest, "<<p[id2]<<","<<p[id2+1]<<" are most distant."<<endl;
}
return 0;
}