线性代数
balabalahoo
My favoriate thing is sleeping.
展开
-
pearson相关系数和nse(纳什系数)的差别
r2与NSE的差异difference between Nash-Sutcliffe efficiency and coefficient of determination为什么我用python的两种方式计算的R方结果不一样?方法一:from scipy.stats import pearsonr 方法二: from sklearn.metrics import r2_scorer2_score只有在是线性满足线性模型时才是r2,否则是nse应该是,所以r2_score计算的其实是NSE,真正需原创 2022-05-25 15:20:15 · 2631 阅读 · 0 评论 -
线性代数--强化
矩阵的秩:满秩:对A_n*m,若R(A)=n,称A为满秩矩阵(可逆矩阵,非奇异矩阵);用初等行变换将矩阵A化为阶梯形矩阵, 则矩阵中非零行的个数就定义为这个矩阵的秩, 记为r(A),根据这个定义, 矩阵的秩可以通过初等行变换求得。需要注意的是, 矩阵的阶梯形并不是唯一的, 但是阶梯形中非零行的个数总是一致的。设A是n阶矩阵, 若r(A) = n, 则称A为满秩矩阵。但满秩不局限于n阶矩阵。若矩阵秩等于行数,称为行满秩;若矩阵秩等于列数,称为列满秩。既是行满秩又是列满秩则为n阶矩阵即n阶方阵。行满秩原创 2020-06-20 18:45:45 · 829 阅读 · 0 评论