猿创征文|信息抽取(2)——pytorch实现Bert-BiLSTM-CRF、Bert-CRF模型进行实体抽取

1 前言

在这里插入图片描述

论文参考:
1 Neural Architectures for Named Entity Recognition
2 Attention is all you need
3 BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

4 Bidirectional LSTM-CRF Models for Sequence Tagging
使用数据集:
https://www.datafountain.cn/competitions/529/ranking
Tips:文章可能存在一些漏洞,欢迎留言指出

2 数据准备

使用了transformers和seqeval库
安装方法:
huggingface-transformers

conda install -c huggingface transformers

seqeval

pip install seqeval -i https://pypi.tuna.tsinghua.edu.cn/simple

代码

import pandas as pd
import torch
from torch import optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from bert_bilstm_crf import Bert_BiLSTM_CRF, NerDataset, NerDatasetTest
from bert_crf import Bert_CRF
from transformers import AutoTokenizer, BertTokenizer
from seqeval.metrics import f1_score

# 路径
TRAIN_PATH = './dataset/train_data_public.csv'
TEST_PATH = './dataset/test_public.csv'
MODEL_PATH1 = './model/bert_bilstm_crf.pkl'
MODEL_PATH2 = '../model/bert_crf.pkl'

# 超参数
MAX_LEN = 64
BATCH_SIZE = 16
EPOCH = 5

# 预设
# 设备
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
# tag2index
tag2index = {
    "O": 0,  # 其他
    "B-BANK": 1, "I-BANK": 2,  # 银行实体
    "B-PRODUCT": 3, "I-PRODUCT": 4,  # 产品实体
    "B-COMMENTS_N": 5, "I-COMMENTS_N": 6,  # 用户评论,名词
    "B-COMMENTS_ADJ": 7, "I-COMMENTS_ADJ": 8  # 用户评论,形容词
}
index2tag = {v: k for k, v in tag2index.items()}

3 数据预处理

== 流程==

  1. 使用 s e r i e s . a p p l y ( l i s t ) \textcolor{red}{series.apply(list)} series.apply(list)函数将str转化为list格式
  2. 加载bert预训练tokenizer,使用 e n c o d e _ p l u s \textcolor{red}{encode\_plus} encode_plus函数对每一个text进行encode
  3. 如果是训练集,则执行如下操作:首先按照空格将每一个tag分割,并转化为索引列表,对每一个index_list,按照长度大于MAX_LEN裁剪,小于MAX_LEN填充的规则,合并为一个list,最后转化为tensor格式

代码

# 预处理
def data_preprocessing(dataset, is_train):
    # 数据str转化为list
    dataset['text_split'] = dataset['text'].apply(list)
    # token
    tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
    texts = dataset['text_split'].array.tolist()
    token_texts = []
    for text in tqdm(texts):
        tokenized = tokenizer.encode_plus(text=text,
                                          max_length=MAX_LEN,
                                          return_token_type_ids=True,
                                          return_attention_mask=True,
                                          return_tensors='pt',
                                          padding='max_length',
                                          truncation=True)
        token_texts.append(tokenized)

    # 训练集有tag,测试集没有tag
    tags = None
    if is_train:
        dataset['tag'] = dataset['BIO_anno'].apply(lambda x: x.split(sep=' '))
        tags = []
        for tag in tqdm(dataset['tag'].array.tolist()):
            index_list = [0] + [tag2index[t] for t in tag] + [0]
            if len(index_list) < MAX_LEN:  # 填充
                pad_length = MAX_LEN - len(index_list)
                index_list += [tag2index['O']] * pad_length
            if len(index_list) > MAX_LEN:  # 裁剪
                index_list = index_list[:MAX_LEN-1] + [0]
            tags.append(index_list)
        tags = torch.LongTensor(tags)

    return token_texts, tags

4 Bert-BiLSTM-CRF模型

在这里插入图片描述
相对于Bert-CRF,中间添加了双向LSTM层。相对BiLSTM-CRF,相当于前面的word_embedding层替换为了bert预训练模型。
代码

import torch
from torch import nn
from torchcrf import CRF
from transformers import BertModel
from torch.utils.data import Dataset


class Bert_BiLSTM_CRF(nn.Module):
    def __init__(self, tag2index):
        super(Bert_BiLSTM_CRF, self).__init__()
        self.tagset_size = len(tag2index)

        # bert层
        self.bert = BertModel.from_pretrained('bert-base-chinese')
        # config = self.bert.config
        # lstm层
        self.lstm = nn.LSTM(input_size=768, hidden_size=128, num_layers=1, batch_first=True, bidirectional=True)
        # dropout层
        self.dropout = nn.Dropout(p=0.1)
        # Dense层
        self.dense = nn.Linear(in_features=256, out_features=self.tagset_size)
        # CRF层
        self.crf = CRF(num_tags=self.tagset_size)

        # 隐藏层
        self.hidden = None

    # 负对数似然损失函数
    def neg_log_likelihood(self, emissions, tags=None, mask=None, reduction=None):
        return -1 * self.crf(emissions=emissions, tags=tags, mask=mask, reduction=reduction)

    def forward(self, token_texts, tags):
        """
        token_texts:{"input_size": tensor,  [batch, 1, seq_len]->[batch, seq_len]
                    "token_type_ids": tensor,  [batch, 1, seq_len]->[batch, seq_len]
                     "attention_mask": tensor  [batch, 1, seq_len]->[batch, seq_len]->[seq_len, batch]
                     }
        tags:  [batch, seq_len]->[seq_len, batch]
        bert_out:  [batch, seq_len, hidden_size(768)]->[seq_len, batch, hidden_size]
        self.hidden:  [num_layers * num_directions, hidden_size(128)]
        out:  [seq_len, batch, hidden_size * 2(256)]
        lstm_feats:  [seq_len, batch, tagset_size]
        loss:  tensor
        predictions:  [batch, num]
        """
        texts, token_type_ids, masks = token_texts['input_ids'], token_texts['token_type_ids'], token_texts['attention_mask']
        texts = texts.squeeze(1)
        token_type_ids = token_type_ids.squeeze(1)
        masks = masks.squeeze(1)
        bert_out = self.bert(input_ids=texts, attention_mask=masks, token_type_ids=token_type_ids)[0]
        bert_out = bert_out.permute(1, 0, 2)
        # 检测设备
        device = bert_out.device
        # 初始化隐藏层参数
        self.hidden = (torch.randn(2, bert_out.size(0), 128).to(device),
                       torch.randn(2, bert_out.size(0), 128).to(device))
        out, self.hidden = self.lstm(bert_out, self.hidden)
        lstm_feats = self.dense(out)

        # 格式转换
        masks = masks.permute(1, 0)
        masks = masks.clone().detach().bool()
        # masks = torch.tensor(masks, dtype=torch.uint8)
        # 计算损失值和预测值
        if tags is not None:
            tags = tags.permute(1, 0)
            loss = self.neg_log_likelihood(lstm_feats, tags, masks, 'mean')
            predictions = self.crf.decode(emissions=lstm_feats, mask=masks)  # [batch, 任意数]
            return loss, predictions
        else:
            predictions = self.crf.decode(emissions=lstm_feats, mask=masks)
            return predictions

Dataset

class NerDataset(Dataset):
    def __init__(self, token_texts, tags):
        super(NerDataset, self).__init__()
        self.token_texts = token_texts
        self.tags = tags

    def __getitem__(self, index):
        return {
            "token_texts": self.token_texts[index],
            "tags": self.tags[index] if self.tags is not None else None,
        }

    def __len__(self):
        return len(self.token_texts)


class NerDatasetTest(Dataset):
    def __init__(self, token_texts):
        super(NerDatasetTest, self).__init__()
        self.token_texts = token_texts

    def __getitem__(self, index):
        return {
            "token_texts": self.token_texts[index],
            "tags": 0
        }

    def __len__(self):
        return len(self.token_texts)

前向传播分析
token_texts:{
“input_size”: tensor, [batch, 1, seq_len]->[batch, seq_len]
“token_type_ids”: tensor, [batch, 1, seq_len]->[batch, seq_len]
“attention_mask”: tensor [batch, 1, seq_len]->[batch, seq_len]->[seq_len, batch]
}
tags: [batch, seq_len]->[seq_len, batch]
bert_out: [batch, seq_len, hidden_size(768)]->[seq_len, batch, hidden_size]
self.hidden: [num_layers * num_directions, hidden_size(128)]
out: [seq_len, batch, hidden_size * 2(256)]
lstm_feats: [seq_len, batch, tagset_size]
loss: tensor
predictions: [batch, num]

5 Bert-CRF模型

在这里插入图片描述

from torch import nn
from torchcrf import CRF
from transformers import BertModel


class Bert_CRF(nn.Module):
    def __init__(self, tag2index):
        super(Bert_CRF, self).__init__()
        self.tagset_size = len(tag2index)

        # bert层
        self.bert = BertModel.from_pretrained('bert-base-chinese')
        # dense层
        self.dense = nn.Linear(in_features=768, out_features=self.tagset_size)
        # CRF层
        self.crf = CRF(num_tags=self.tagset_size)

        # 隐藏层
        self.hidden = None

    def neg_log_likelihood(self, emissions, tags=None, mask=None, reduction=None):
        return -1 * self.crf(emissions=emissions, tags=tags, mask=mask, reduction=reduction)

    def forward(self, token_texts, tags):
        """
        token_texts:{"input_size": tensor,  [batch, 1, seq_len]->[batch, seq_len]
                    "token_type_ids": tensor,  [batch, 1, seq_len]->[batch, seq_len]
                     "attention_mask": tensor  [batch, 1, seq_len]->[batch, seq_len]->[seq_len, batch]
                     }
        tags:  [batch, seq_len]->[seq_len, batch]
        bert_out:  [batch, seq_len, hidden_size(768)]->[seq_len, batch, hidden_size]
        feats:  [seq_len, batch, tagset_size]
        loss:  tensor
        predictions:  [batch, num]
        """
        texts, token_type_ids, masks = token_texts.values()
        texts = texts.squeeze(1)
        token_type_ids = token_type_ids.squeeze(1)
        masks = masks.squeeze(1)
        bert_out = self.bert(input_ids=texts, attention_mask=masks, token_type_ids=token_type_ids)[0]
        bert_out = bert_out.permute(1, 0, 2)
        feats = self.dense(bert_out)

        # 格式转换
        masks = masks.permute(1, 0)
        masks = masks.clone().detach().bool()
        # 计算损失之和预测值
        if tags is not None:
            tags = tags.permute(1, 0)
            loss = self.neg_log_likelihood(feats, tags, masks, 'mean')
            predictions = self.crf.decode(emissions=feats, mask=masks)
            return loss, predictions
        else:
            predictions = self.crf.decode(emissions=feats, mask=masks)
            return predictions

前向传播分析
token_texts:{
“input_size”: tensor, [batch, 1, seq_len]->[batch, seq_len]
“token_type_ids”: tensor, [batch, 1, seq_len]->[batch, seq_len]
“attention_mask”: tensor [batch, 1, seq_len]->[batch, seq_len]->[seq_len, batch]
}
tags: [batch, seq_len]->[seq_len, batch]
bert_out: [batch, seq_len, hidden_size(768)]->[seq_len, batch, hidden_size]
feats: [seq_len, batch, tagset_size]
loss: tensor
predictions: [batch, num]

6 模型训练

# 训练
def train(train_dataloader, model, optimizer, epoch):
    for i, batch_data in enumerate(train_dataloader):
        token_texts = batch_data['token_texts'].to(DEVICE)
        tags = batch_data['tags'].to(DEVICE)
        loss, predictions = model(token_texts, tags)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if i % 200 == 0:
            micro_f1 = get_f1_score(tags, predictions)
            print(f'Epoch:{epoch} | i:{i} | loss:{loss.item()} | Micro_F1:{micro_f1}')

7 结果评估

# 计算f1值
def get_f1_score(tags, predictions):
    tags = tags.to('cpu').data.numpy().tolist()
    temp_tags = []
    final_tags = []
    for index in range(BATCH_SIZE):
        # predictions先去掉头,再去掉尾
        predictions[index].pop()
        length = len(predictions[index])
        temp_tags.append(tags[index][1:length])
        predictions[index].pop(0)
        # 格式转化,转化为List(str)
        temp_tags[index] = [index2tag[x] for x in temp_tags[index]]
        predictions[index] = [index2tag[x] for x in predictions[index]]
        final_tags.append(temp_tags[index])

    f1 = f1_score(final_tags, predictions, average='micro')
    return f1

Bert-BiLSTM-CRF

GPU_NAME:NVIDIA GeForce RTX 3060 Laptop GPU | Memory_Allocated:413399040
Epoch:0 | i:0 | loss:58.75139236450195 | Micro_F1:0.0
Epoch:0 | i:200 | loss:26.20857048034668 | Micro_F1:0.0
Epoch:0 | i:400 | loss:18.385879516601562 | Micro_F1:0.0
Epoch:1 | i:0 | loss:20.496620178222656 | Micro_F1:0.0
Epoch:1 | i:200 | loss:15.421577453613281 | Micro_F1:0.0
Epoch:1 | i:400 | loss:11.486358642578125 | Micro_F1:0.0
Epoch:2 | i:0 | loss:14.486601829528809 | Micro_F1:0.0
Epoch:2 | i:200 | loss:10.369649887084961 | Micro_F1:0.18867924528301888
Epoch:2 | i:400 | loss:8.056020736694336 | Micro_F1:0.5652173913043479
Epoch:3 | i:0 | loss:14.958343505859375 | Micro_F1:0.41025641025641024
Epoch:3 | i:200 | loss:9.968450546264648 | Micro_F1:0.380952380952381
Epoch:3 | i:400 | loss:8.947534561157227 | Micro_F1:0.5614035087719299
Epoch:4 | i:0 | loss:9.189300537109375 | Micro_F1:0.5454545454545454
Epoch:4 | i:200 | loss:8.673486709594727 | Micro_F1:0.43999999999999995
Epoch:4 | i:400 | loss:6.431578636169434 | Micro_F1:0.6250000000000001

Bert-CRF

GPU_NAME:NVIDIA GeForce RTX 3060 Laptop GPU | Memory_Allocated:409739264
Epoch:0 | i:0 | loss:57.06057357788086 | Micro_F1:0.0
Epoch:0 | i:200 | loss:12.05904483795166 | Micro_F1:0.0
Epoch:0 | i:400 | loss:13.805888175964355 | Micro_F1:0.39393939393939387
Epoch:1 | i:0 | loss:9.807424545288086 | Micro_F1:0.4905660377358491
Epoch:1 | i:200 | loss:8.098043441772461 | Micro_F1:0.509090909090909
Epoch:1 | i:400 | loss:7.059831619262695 | Micro_F1:0.611111111111111
Epoch:2 | i:0 | loss:6.629759788513184 | Micro_F1:0.6133333333333333
Epoch:2 | i:200 | loss:3.593130350112915 | Micro_F1:0.6896551724137931
Epoch:2 | i:400 | loss:6.8786163330078125 | Micro_F1:0.6666666666666666
Epoch:3 | i:0 | loss:5.009466648101807 | Micro_F1:0.6969696969696969
Epoch:3 | i:200 | loss:2.9549810886383057 | Micro_F1:0.8450704225352113
Epoch:3 | i:400 | loss:3.3801448345184326 | Micro_F1:0.868421052631579
Epoch:4 | i:0 | loss:5.864352226257324 | Micro_F1:0.626865671641791
Epoch:4 | i:200 | loss:3.308518409729004 | Micro_F1:0.7666666666666667
Epoch:4 | i:400 | loss:4.221902847290039 | Micro_F1:0.7000000000000001

分析
进行了5个epoch的训练
数据集比较小,只有7000多条数据,因此两个模型效果拟合效果相对BiLSTM+CRF模型提升不大。而添加了双向LSTM层之后,模型效果反而有所下降。

8 训练集流水线

注意学习率要设置小一点(小于1e-5),否则预测结果均为0,不收敛。

def execute():
    # 加载训练集
    train_dataset = pd.read_csv(TRAIN_PATH, encoding='utf8')
    # 数据预处理
    token_texts, tags = data_preprocessing(train_dataset, is_train=True)
    # 数据集装载
    train_dataset = NerDataset(token_texts, tags)
    train_dataloader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4)
    # 构建模型
    # model = Bert_BiLSTM_CRF(tag2index=tag2index).to(DEVICE)
    model = Bert_CRF(tag2index=tag2index).to(DEVICE)
    optimizer = optim.AdamW(model.parameters(), lr=1e-6)
    print(f"GPU_NAME:{torch.cuda.get_device_name()} | Memory_Allocated:{torch.cuda.memory_allocated()}")
    # 模型训练
    for i in range(EPOCH):
        train(train_dataloader, model, optimizer, i)

    # 保存模型
    torch.save(model.state_dict(), MODEL_PATH2)

9 测试集流水线

# 测试集预测实体标签
def test():
    # 加载数据集
    test_dataset = pd.read_csv(TEST_PATH, encoding='utf8')
    # 数据预处理
    token_texts, _ = data_preprocessing(test_dataset, is_train=False)
    # 装载测试集
    dataset_test = NerDatasetTest(token_texts)
    test_dataloader = DataLoader(dataset=dataset_test, batch_size=BATCH_SIZE, shuffle=False, num_workers=4)
    # 构建模型
    # model = Bert_BiLSTM_CRF(tag2index).to(DEVICE)
    model = Bert_CRF(tag2index).to(DEVICE)
    model.load_state_dict(torch.load(MODEL_PATH2))
    # 模型预测
    model.eval()
    predictions_list = []
    with torch.no_grad():
        for i, batch_data in enumerate(test_dataloader):
            token_texts = batch_data['token_texts'].to(DEVICE)
            predictions = model(token_texts, None)
            predictions_list.extend(predictions)
    print(len(predictions_list))
    print(len(test_dataset['text']))

    # 将预测结果转换为文本格式
    entity_tag_list = []
    index2tag = {v: k for k, v in tag2index.items()}  # 反转字典
    for i, (text, predictions) in enumerate(zip(test_dataset['text'], predictions_list)):
        # 删除首位和最后一位
        predictions.pop()
        predictions.pop(0)
        text_entity_tag = []
        for c, t in zip(text, predictions):
            if t != 0:
                text_entity_tag.append(c + index2tag[t])
        entity_tag_list.append(" ".join(text_entity_tag))  # 合并为str并加入列表中

    print(len(entity_tag_list))
    result_df = pd.DataFrame(data=entity_tag_list, columns=['result'])
    result_df.to_csv('./data/result_df3.csv')

在这里插入图片描述
结果好像存在一些问题。。。

10 记录遇到的一些坑

(1)模型预测结果全为O
原因:按照之前的模型,AdamW优化器学习率设置0.001,学习率过高,导致梯度下降过程中落入了局部最低点。
解决方法:重新设置学习率为1e-6
(2)transformers的AdamW显示过期
解决方法:直接使用torch.optim的AdamW即可
(3)transformers库在ubuntu上无法使用
原因:缺少依赖
解决方法:

apt-get update
apt-get install libssl1.0.0 libssl-dev

使用此代码在服务器终端上跑完后,仍会报错,原因未知,暂时用os.system()嵌入到代码中,在windows系统中无此报错。
(4)笔记本(联想R7000P2021)运行代码温度过高(最高95度)
解决方法:先用均衡模式(CPU不睿频)跑,温度只有六七十度,然后开启野兽模式跑一段时间,温度高了再切换为均衡模式。

11 完整代码

import pandas as pd
import torch
from torch import optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from bert_bilstm_crf import Bert_BiLSTM_CRF, NerDataset, NerDatasetTest
from bert_crf import Bert_CRF
from transformers import AutoTokenizer, BertTokenizer
from seqeval.metrics import f1_score

# 路径
TRAIN_PATH = './dataset/train_data_public.csv'
TEST_PATH = './dataset/test_public.csv'
MODEL_PATH1 = './model/bert_bilstm_crf.pkl'
MODEL_PATH2 = '../model/bert_crf.pkl'

# 超参数
MAX_LEN = 64
BATCH_SIZE = 16
EPOCH = 5

# 预设
# 设备
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
# tag2index
tag2index = {
    "O": 0,  # 其他
    "B-BANK": 1, "I-BANK": 2,  # 银行实体
    "B-PRODUCT": 3, "I-PRODUCT": 4,  # 产品实体
    "B-COMMENTS_N": 5, "I-COMMENTS_N": 6,  # 用户评论,名词
    "B-COMMENTS_ADJ": 7, "I-COMMENTS_ADJ": 8  # 用户评论,形容词
}
index2tag = {v: k for k, v in tag2index.items()}


# 训练
def train(train_dataloader, model, optimizer, epoch):
    for i, batch_data in enumerate(train_dataloader):
        token_texts = batch_data['token_texts'].to(DEVICE)
        tags = batch_data['tags'].to(DEVICE)
        loss, predictions = model(token_texts, tags)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if i % 200 == 0:
            micro_f1 = get_f1_score(tags, predictions)
            print(f'Epoch:{epoch} | i:{i} | loss:{loss.item()} | Micro_F1:{micro_f1}')


# 计算f1值
def get_f1_score(tags, predictions):
    tags = tags.to('cpu').data.numpy().tolist()
    temp_tags = []
    final_tags = []
    for index in range(BATCH_SIZE):
        # predictions先去掉头,再去掉尾
        predictions[index].pop()
        length = len(predictions[index])
        temp_tags.append(tags[index][1:length])
        predictions[index].pop(0)
        # 格式转化,转化为List(str)
        temp_tags[index] = [index2tag[x] for x in temp_tags[index]]
        predictions[index] = [index2tag[x] for x in predictions[index]]
        final_tags.append(temp_tags[index])

    f1 = f1_score(final_tags, predictions, average='micro')
    return f1


# 预处理
def data_preprocessing(dataset, is_train):
    # 数据str转化为list
    dataset['text_split'] = dataset['text'].apply(list)
    # token
    tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
    texts = dataset['text_split'].array.tolist()
    token_texts = []
    for text in tqdm(texts):
        tokenized = tokenizer.encode_plus(text=text,
                                          max_length=MAX_LEN,
                                          return_token_type_ids=True,
                                          return_attention_mask=True,
                                          return_tensors='pt',
                                          padding='max_length',
                                          truncation=True)
        token_texts.append(tokenized)

    # 训练集有tag,测试集没有tag
    tags = None
    if is_train:
        dataset['tag'] = dataset['BIO_anno'].apply(lambda x: x.split(sep=' '))
        tags = []
        for tag in tqdm(dataset['tag'].array.tolist()):
            index_list = [0] + [tag2index[t] for t in tag] + [0]
            if len(index_list) < MAX_LEN:  # 填充
                pad_length = MAX_LEN - len(index_list)
                index_list += [tag2index['O']] * pad_length
            if len(index_list) > MAX_LEN:  # 裁剪
                index_list = index_list[:MAX_LEN-1] + [0]
            tags.append(index_list)
        tags = torch.LongTensor(tags)

    return token_texts, tags


# 执行流水线
def execute():
    # 加载训练集
    train_dataset = pd.read_csv(TRAIN_PATH, encoding='utf8')
    # 数据预处理
    token_texts, tags = data_preprocessing(train_dataset, is_train=True)
    # 数据集装载
    train_dataset = NerDataset(token_texts, tags)
    train_dataloader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4)
    # 构建模型
    # model = Bert_BiLSTM_CRF(tag2index=tag2index).to(DEVICE)
    model = Bert_CRF(tag2index=tag2index).to(DEVICE)
    optimizer = optim.AdamW(model.parameters(), lr=1e-6)
    print(f"GPU_NAME:{torch.cuda.get_device_name()} | Memory_Allocated:{torch.cuda.memory_allocated()}")
    # 模型训练
    for i in range(EPOCH):
        train(train_dataloader, model, optimizer, i)

    # 保存模型
    torch.save(model.state_dict(), MODEL_PATH2)


# 测试集预测实体标签
def test():
    # 加载数据集
    test_dataset = pd.read_csv(TEST_PATH, encoding='utf8')
    # 数据预处理
    token_texts, _ = data_preprocessing(test_dataset, is_train=False)
    # 装载测试集
    dataset_test = NerDatasetTest(token_texts)
    test_dataloader = DataLoader(dataset=dataset_test, batch_size=BATCH_SIZE, shuffle=False, num_workers=4)
    # 构建模型
    model = Bert_BiLSTM_CRF(tag2index).to(DEVICE)
    model.load_state_dict(torch.load(MODEL_PATH2))
    # 模型预测
    model.eval()
    predictions_list = []
    with torch.no_grad():
        for i, batch_data in enumerate(test_dataloader):
            token_texts = batch_data['token_texts'].to(DEVICE)
            predictions = model(token_texts, None)
            predictions_list.extend(predictions)
    print(len(predictions_list))
    print(len(test_dataset['text']))

    # 将预测结果转换为文本格式
    entity_tag_list = []
    index2tag = {v: k for k, v in tag2index.items()}  # 反转字典
    for i, (text, predictions) in enumerate(zip(test_dataset['text'], predictions_list)):
        # 删除首位和最后一位
        predictions.pop()
        predictions.pop(0)
        text_entity_tag = []
        for c, t in zip(text, predictions):
            if t != 0:
                text_entity_tag.append(c + index2tag[t])
        entity_tag_list.append(" ".join(text_entity_tag))  # 合并为str并加入列表中

    print(len(entity_tag_list))
    result_df = pd.DataFrame(data=entity_tag_list, columns=['result'])
    result_df.to_csv('./data/result_df3.csv')


if __name__ == '__main__':
    execute()
    test()

### 回答1: BERT-CRF是一种基于深度学习的序列标注模型,可以实现对自然语言文本进行序列标注。在实现BERT-CRF模型时,需要准备一个数据集,用于训练和评估模型的性能。 数据集是BERT-CRF模型中非常重要的一部分,它决定了模型的性能和泛化能力。数据集应当包含一组有标注的样本,每个样本都应该是一个输入序列和其对应的标注序列。 对于自然语言处理任务,常用的数据集包括CoNLL-2003、OntoNotes、ACE2005等。这些数据集包含了大量的有标注文本数据,并被广泛应用于序列标注任务中。在准备数据集时,需要根据具体的任务和数据集格式对数据集进行处理。 对于CoNLL-2003数据集,其格式为每个词占据一行,每行包含9个字段,分别为:单词、词性、分块标签和4个NER标记。在处理数据集时,需要将每个样本中的文本与其对应的NER标签分离,并进行适当的编码和分割。 在BERT-CRF实现过程中,还需要考虑如何将输入向量化,并将其转换为能够被BERT模型接受的格式。一种常用的方法是使用bert-serving来将原始文本转换为BERT向量,然后将向量输入到CRF模型进行标注。 总之,BERT-CRF实现需要准备一个有效的训练数据集,数据集应当包含有标注的样本,并符合模型的输入格式。同时,还需要针对具体的任务和数据集格式对数据集进行适当的预处理和编码。 ### 回答2: BERT-CRF是一种基于BERT模型和条件随机场(CRF)的序列标注模型。在实现bert-crf之前,我们需要一个数据集来进行训练和测试。数据集就是文本序列上每个词的标注结果,例如分句、分词、命名实体标注、词性标注等。下面我们来介绍一下如何准备一个数据集。 首先,选择一个合适的任务,例如中文命名实体识别(NER)。NER任务是指识别文本数据中具有特定意义的实体,如人名、组织机构名、地名等。选择该任务的原因是其具有广泛的应用场景,适合用来演示bert-crf模型实现流程。 接下来是数据收集和预处理。我们需要收集一些包括实体标注信息的文本语料库,并进行预处理,例如分词、去除停用词、标注实体、划分训练集和测试集等。在这一步可以使用一些工具来简化操作,例如jieba分词、StanfordNLP、pyltp等。最终得到的文本序列和标注序列是该数据集的核心部分。 然后是特征工程,即将文本序列和标注序列转化为模型可接受的特征格式。具体来说,需要将文本序列中每个词转化为对应的BERT向量表达形式,同时将标注序列转化为one-hot编码形式。这些特征都可以通过使用相应的Python工具来进行处理。 最后是模型训练和测试。BERT-CRF模型的训练可以使用已经训练好的BERT权重作为初始值,并在预训练期的基础上进行finetuning。模型测试时可以使用在预处理阶段划分的测试集进行验证,最终将预测的标注序列与真实标注序列进行比较,并计算评价指标,如精度、召回率、F1值等。 总之,准备一个数据集是BERT-CRF模型实现的重要一步。数据集的质量将直接影响模型的表现效果和应用效果。因此,数据集的准确性和完备性都需要得到重视。 ### 回答3: BERT-CRF是一种自然语言处理技术,其基本思想是结合 BERT(Bidirectional Encoder Representations from Transformers)预训练模型和条件随机场(CRF)来完成对于自然语言序列标注的任务。 在这种技术中,BERT被用来对输入文本进行特征提取,并且将提取的特征序列作为CRF模型的输入,CRF负责对序列进行标注。 对于BERT-CRF,数据集的构建非常重要。数据集必须包含大量的标记数据,即标有正确标注的文本的数据,以确保CRF模型的准确性和效果。构建数据集的主要步骤如下: 1. 定义标记标准 在构建数据集之前,需要定义标记标准。在自然语言处理任务中,标记通常包含实体标记、词义标记、词性标记等。标志标准将大大影响数据集的构建和模型的学习效果,因此必须尽可能严格定义。 2. 选择文本样本 选择文本样本时,需要选择具有代表性的样本来训练模型,应尽可能覆盖各种文本类型和语言风格。这些文本样本应来自于各种来源,例如新闻报道、论坛、社交媒体等。 3. 标记数据 将选定的文本样本转换为适合模型学习的标记数据。还可以利用现成的标记工具进行标记化,例如Stanford NER、spaCy等。 4. 数据预处理 对标注好的数据进行清洗、切分、建立词典等预处理操作,使其适合于BERT-CRF模型进行学习和训练。这些任务可以使用Python等语言的自然语言处理库来完成。 5. 划分数据集 将数据集划分为训练集、开发集和测试集,通过不断调整模型参数和超参数,并在开发集上测试结果来优化模型,最终在测试集上进行评估。 总而言之,BERT-CRF技术在自然语言处理领域的应用,需要基于一组标记良好且具有代表性的数据集。通过上述步骤,我们可以建立一个完善的数据集来支持BERT-CRF模型的学习和训练。
评论 263
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

热爱旅行的小李同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值