爬取过程在这里:
Python爬取你好李焕英豆瓣短评并利用stylecloud制作更酷炫的词云图
本文基于前文爬取生成的douban.txt,基于SnowNLP做情感分析。
依赖库:
豆瓣镜像比较快:
pip install snownlp -i http://pypi.douban.com/simple/ --trusted-host=pypi.douban.com/simple
初识SnowNLP:
SnowNLP是一个常用的Python文本分析库,是受到TextBlob启发而发明的。由于当前自然语言处理库基本都是针对英文的,而中文没有空格分割特征词,Python做中文文本挖掘较难,后续开发了一些针对中文处理的库,例如SnowNLP、Jieba、BosonNLP等。
Snownlp主要功能包括:
- 中文分词(算法是Character-Based Generative Model)
- 词性标注(原理是TnT、3-gram 隐马)
- 情感分析
- 文本分类(原理是朴素贝叶斯)
- 转换拼音、繁体转简体
- 提取文本关键词(原理是TextRank)
- 提取摘要(原理是TextRank)、分割句子
- 文本相似(原理是BM25)
情感分析实战:
SnowNLP情感分析是基于情感词典实现的,其简单的将文本分为两类,积极和消极,返回值为情绪的概率,也就是情感评分在[0,1]之间,越接近1,情感表现越积极,越接近0,情感表现越消极。
下面对爬取的豆瓣电影《你好李焕英》评论进行情感分析。
情感各分数段出现频率
首先统计各情感分数段出现的评率并绘制对应的柱状图。
对douban.txt文件逐行进行情感倾向值计算,代码如下:
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
from snownlp import SnowNLP
import matplotlib.pyplot as plt
import numpy as np
source = open("douban.txt"