dfs- 八皇后
来源:洛谷p1219
题目描述
一个如下的 6×6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
上面的布局可以用序列
2
4
6
1
3
5
2\ 4\ 6\ 1\ 3\ 5
2 4 6 1 3 5
来描述,第 i个数字表示在第 i行的相应位置有一个棋子,如下:
行号 :
1
2
3
4
5
6
1\ 2\ 3\ 4\ 5\ 6
1 2 3 4 5 6
列号 :
2
4
6
1
3
5
2\ 4\ 6\ 1\ 3\ 5
2 4 6 1 3 5
这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 3 个解。最后一行是解的总个数。
输入格式
一行一个正整数 n,表示棋盘是 n×n 大小的。
输出格式
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
输入输出样例
输入 #1
6
输出 #1
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
主要思路是(回溯):
假设皇后现在可以摆在第n行第x个位置,我先试探性的在此位置放一个皇后,然后将对应的行,列,对角线全部记录成不可用。
然后到第n+1行,如果第n+1行能找到一个位置放置皇后,就继续向下找(第n+1行,第n+2行。。。只要找的到)。如果找不到就把第n行的皇后的位置移到第n行下一个可以放置皇后的位置,继续继续向下找。
具体操作:
1:用sat[15]数组记录皇后位置,sat的下标默认为行,sat的值是对应列,例如sat[0]=4,即为在第一行的第四个位置存在一个皇后
2:我选择了三个数组来表示棋盘的状态(即此行,列,对角线是否可用)分别是lr[15] 从左下到右上的对角线(平行线),rl[15]从右下到左上的对角线(平行线),l[15]判断该列是否可用;(这里没有判断行的,因为我们的皇后是上一行摆好了之后就到下一行去找,所以不存在行不能用的问题)
3:这时,怎么表示出对角线和行列的关系就成了我要解决的的主要问题,然后发现左下到右上的对角线(对角线平行线)如31 22 13和41 32 23 14,行列相加等于一个固定的值,且就等于行列之和。
右下到左上也有规律行减去列的值是固定的,为了保证数组下标为正数,所以我们在行减去列的基础上加上n。
11 | 12 | 13 | 14 |
---|---|---|---|
21 | 22 | 23 | 23 |
31 | 32 | 33 | 34 |
41 | 42 | 43 | 44 |
现在应该没啥问题能了吧。然后我就交了一发,就WA了哈哈哈哈。
我发现数组开太小了,一个n*n的棋盘,他的对角线的条数比n要大很多啊,lr[15],必然会越界。。。(还是解释一下,lr[]是用于判断棋盘的每一条从左下到右上的对角线(平行线)是否可用。为0可用,为1不可!罗罗嗦嗦 )
然后改到lr[40]就AC啦~
上代码:
#include<bits/stdc++.h>
using namespace std;
int n,res=0;//n为棋盘大小,res为最终结果数
int sat[15];//sat的下标默认为行,sat的值是对应列,例如sat[0]=4,即为在第一行的第四个位置存在一个皇后
int lr[40],rl[40],l[40];//lr表示从左下到右上的对角线,rl表示从右下到左上的对角线,l记录某列是否可用
void dfs(int a)
{
if(a>n) //n行都走遍了,深搜完毕
{
res++;//又一种情况满足条件
if(res<=3){//输出字典序列的前三种情况
for(int i=1;i<=n;i++)
{
printf("%d ",sat[i]);
}
printf("\n");
return ;
}
else return;
}
//每一行的每个位置都试探一下
for(int j=1;j<=n;j++)
{
if(l[j]==0&&lr[a+j]==0&&rl[a-j+n]==0)
{
l[j]=1;//该列被记录
lr[a+j]=1;//该条对角线被记录
rl[a-j+n]=1;//该条右下到左上的对角线被记录
sat[a]=j;//第a行皇后的位置是j
dfs(a+1);//下一行搜索
l[j]=lr[a+j]=rl[a-j+n]=0;//回溯
}
}
}
int main (){
scanf("%d",&n);
dfs(1);
printf("%d\n",res);
return 0;
}
欢迎留下友好的评论呀,哪里有问题dd我呀。