Flink实战——集群搭建

目录

一、引言

1.1 本文目标

1.2 预备工作和软件版本说明

二、集群规划

三、搭建步骤

3.1 解压安装包

3.2 集群文件配置

3.2.2 workers文件配置

3.2.3 masters文件配置

3.3 分发配置文件

3.4 修改TaskManager节点地址

3.5 测试

3.5.1 集群启动成功 

3.5.2 Web UI页面启动成功

四、集群启动报错问题

一、引言

1.1 本文目标

        本文主要在Linux系统上对大数据处理引擎Flink的相关安装步骤进行介绍。

1.2 预备工作和软件版本说明

        在具体搭建本文的Flink集群之前,首先需要读者在Linux系统上安装和部署过Hadoop集群(3台节点服务器),本文默认读者已经安装和部署过Hadoop集群,故对Hadoop集群的相关安装部署不做相应介绍。

        同时,为避免相应版本之间的冲突,本文将所使用的相关软件版本汇总至如下表1所示情况。

表1 相关软件版本说明
软件名称 软件版本号
jdk 1.8
hadoop 3.1.3
flink 1.17

二、集群规划

        本文为三台节点服务器分配如下表2所示的集群角色,后文将针对表2所示情况,在Linux系统上搭建Flink1.17版本的集群。

表2 节点服务器的角色分配

节点服务器名称

hadoop00

hadoop01

hadoop02

角色规划

JobManager

TaskManager

TaskManager

TaskManager

三、搭建步骤

3.1 解压安装包

        (1)从官网或其他相关途径下载flink-1.17.0-bin-scala_2.12.tgz版本,其中官网下载途径可见地址

### 回答1: Flink standalone集群搭建步骤如下: 1. 下载Flink安装包并解压缩到指定目录。 2. 配置Flink集群的masters和workers节点,可以在conf目录下的masters和workers文件中进行配置。 3. 启动Flink集群的masters节点,可以使用bin/start-cluster.sh命令启动。 4. 启动Flink集群的workers节点,可以使用bin/taskmanager.sh start命令启动。 5. 验证Flink集群是否正常运行,可以使用bin/flink list命令查看当前运行的Flink作业。 6. 在Flink集群中提交作业,可以使用bin/flink run命令提交作业。 7. 监控Flink集群的运行状态,可以使用Flink的Web UI或者JMX监控工具进行监控。 以上就是Flink standalone集群搭建的基本步骤,希望对您有所帮助。 ### 回答2: Apache Flink是一个处理流和批量数据的通用分布式计算引擎,可在大规模数据集上快速实现低延迟和高吞吐量。Flink提供了一个Standalone集群模式,使开发人员可以在自己的本地机器上测试和验证他们的应用程序,而无需构建一个完整的分布式环境。在本文中,我们将介绍如何搭建一个Flink Standalone集群。 1. 确保你的环境满足Flink的要求,比如安装Java环境等。 2. 下载Flink二进制文件。从Flink官网下载最新的tar文件,然后解压到一个目录下。 3. 配置Flink。打开conf/flink-conf.yaml文件,配置Flink的参数,比如jobmanager.rpc.address(JobManager监听的主机地址),taskmanager.numberOfTaskSlots(每个TaskManager能够执行的任务数)等。 4. 启动JobManager。在Flink的bin目录下执行以下命令: ./start-cluster.sh 这将启动JobManager和TaskManager进程。 5. 访问Flink Web Dashboard。在浏览器中输入http://localhost:8081,可以访问Flink Web Dashboard。这里可以查看集群的状态、运行中的任务、日志等。 6. 启动应用程序。使用Flink提供的运行脚本(bin/flink run)来提交应用程序。 7. 观察应用程序的运行状态。可以在Flink Web Dashboard中查看应用程序的运行状态和日志,还可以监控各种指标,如吞吐量、延迟、资源使用情况等。 8. 停止集群。在bin目录下执行以下命令: ./stop-cluster.sh 这将停止JobManager和TaskManager进程。 总之,通过Flink Standalone集群,您可以在本地机器上测试和验证您的应用程序,并且几乎没有任何成本。值得注意的是,Standalone集群并不适合生产环境,但当您需要在本地机器上调试应用程序时,它是一个很好的选择。 ### 回答3: Apache Flink是一个开源的分布式流处理系统。它以高效、可伸缩和容错为设计目标,因此广泛应用于大数据领域。Flink可以运行在各种集群上,包括Hadoop YARN和Apache Mesos等。在本文中,我们将讨论如何在Flink standalone集群上搭建分布式流处理系统。 Flink standalone集群搭建的准备工作: 在搭建Flink standalone集群之前,需要确保已经完成以下准备工作: 1. 安装Java 8或更高版本。 2. 下载Flink发行版,并解压缩至安装目录。 Flink standalone集群搭建的步骤: 1. 在主节点上启动Flink集群管理器。在Flink所在目录下,输入以下命令: ./bin/start-cluster.sh 2. 查看集群状态。在Flink所在目录下,输入以下命令: ./bin/flink list 如果输出结果为空,则说明集群状态正常。 3. 在从节点上启动TaskManager。在从节点所在机器上,输入以下命令: ./bin/taskmanager.sh start 4. 查看TaskManager状态。在从节点所在机器上,输入以下命令: ./bin/taskmanager.sh status 如果输出结果为“正常运行”,则说明TaskManager已经成功启动。 5. 提交Flink作业。在Flink所在目录下,输入以下命令: ./bin/flink run ./examples/streaming/SocketWindowWordCount.jar --port 9000 其中,SocketWindowWordCount.jar是一个简单的Flink作业,用于计算流式数据的词频统计。 6. 监控作业运行情况。在浏览器中输入以下地址: http://localhost:8081 可以查看作业的运行状态、性能指标等信息。 总结: 通过以上步骤,我们已经成功搭建了Flink standalone集群,并提交了一个简单的流处理作业。需要注意的是,本文仅提供了基础的搭建步骤,实际生产环境中还需要进行更加细致的配置和管理。同时,Flink具有丰富的API和生态系统,可以灵活应对不同的数据处理场景。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值