小L的数列 (最长上升子序列变式)

题目链接
题意
小L喜欢数和数列。小L称a1...an​这些数为优秀的。小L称一个序列b1​...bm​为好的当且仅当:
1.对于任意的 i(1≤i<m),满足 bi<bi+1​。
2.对于任意的 i(1≤i<m),满足 gcd(bi,bi+1)>1。其中,gcd(x,y) 为 x 和 y 的最大公因数,即最大的 d,满足:d∣x且d∣y。
3.对于任意的 i(1≤i≤m),bi这个数是优秀的。
现在,小L想知道最长的能称为好的的序列的长度是多少,容易证明这个长度是有穷的。
思路:​​​

每次分解当前位置数的因子,由上一个有该因子的最近的数的状态对该点进行更新。

代码:

#include<bits/stdc++.h>
using namespace std;
int p[100010],dp[100010];
int mp[100010];
int main(){
    int t;
    scanf("%d",&t);
    int n;
    while(t--){
        scanf("%d",&n);
        memset(mp,0,sizeof mp);
        for(int i=1;i<=n;i++){
            dp[i]=0;
            scanf("%d",&p[i]);
        }
        sort(p+1,p+1+n);
        int ans=0;
        for(int i=1;i<=n;i++){
            dp[i]=1;
            for(int j=2;j*j<=p[i];j++){
                if(p[i]%j==0){
                    dp[i]=max(dp[i],dp[mp[j]]+1);
                    dp[i]=max(dp[i],dp[mp[p[i]/j]]+1);
                }
            }
            for(int j=1;j*j<=p[i];j++){
                if(p[i]%j==0){
                    mp[j]=i;
                    mp[p[i]/j]=i;
                }
            }
            ans=max(dp[i],ans);
        }
        printf("%d\n",ans);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值