大雪菜的课(笔记)
搜索与图论(二)
1.最短路
(3).Bellman_ford
模板()
时间复杂度 O(nm)O(nm), n 表示点数,m表示边数
注意在模板题中需要对下面的模板稍作修改,加上备份数组,详情见模板题。
int n, m; // n表示点数,m表示边数
int dist[N]; // dist[x]存储1到x的最短路距离
struct Edge // 边,a表示出点,b表示入点,w表示边的权重
{
int a, b, w;
}edges[M];
// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
// 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
for (int i = 0; i < n; i ++ )
{
for (int j = 0; j < m; j ++ )
{
int a = edges[j].a, b = edges[j].b, w = edges[j].w;
if (dist[b] > dist[a] + w)
dist[b] = dist[a] + w;
}
}
if (dist[n] > 0x3f3f3f3f / 2) return -1;
return dist[n];
}
AcWing853. 有边数限制的最短路
给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出从1号点到n号点的最多经过k条边的最短距离,如果无法从1号点走到n号点,输出impossible。
注意:图中可能 存在负权回路 。
输入格式
第一行包含三个整数n,m,k。
接下来m行,每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。
输出格式
输出一个整数,表示从1号点到n号点的最多经过k条边的最短距离。
如果不存在满足条件的路径,则输出“impossible”。
数据范围
1≤n,k≤500,
1≤m≤10000,
任意边长的绝对值不超过10000。
输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3
#include <iostream>
#include <string.h>
using namespace std;
const int N=510,M=10010;
int dist[N],backup[N];
int n,m,k;
struct edge{
int a,b,w;
}ed[M];
void bellman_ford()
{
memset(dist,0x3f,sizeof dist);
dist[1]=0;
for(int i=0;i<k;i++){
memcpy(backup,dist,sizeof dist);
for(int j=0;j<m;j++){
auto t=ed[j];
dist[t.b]=min(dist[t.b],backup[t.a]+t.w);
}
}
}
int main()
{
cin>>n>>m>>k;
for(int i=0;i<m;i++){
int a,b,w;
cin>>a>>b>>w;
ed[i]={a,b,w};
}
bellman_ford();
if(dist[n]>0x3f3f3f3f/2) cout<<"impossible";
else cout<<dist[n];
return 0;
}