神经网络学习之卷积神经网络pytorch实现Lenet和Alexnet框架定义

本文对比了LeNet与AlexNet两种经典的卷积神经网络模型,详述了它们的结构,包括卷积层、激活函数和池化层的设计,以及全连接层的使用。通过实例展示了如何进行前向计算,适合初学者理解深度学习入门网络架构。
摘要由CSDN通过智能技术生成

Lenet

import torch
from torch import nn
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        '''
        这里搭建卷积层,需要按顺序定义卷积层、
        激活函数、最大池化层、卷积层、激活函数、最大池化层,
        具体形状见测试说明
        '''
        self.conv = nn.Sequential(
            ########## Begin ##########
            nn.Conv2d(1,6,5),
            nn.Sigmoid(),
            nn.MaxPool2d(2,2),
            nn.Conv2d(6,16,5),
            nn.Sigmoid(),
            nn.MaxPool2d(2,2)

            ########## End ##########
        )
        '''
        这里搭建全连接层,需要按顺序定义全连接层、
        激活函数、全连接层、激活函数、全连接层,
        具体形状见测试说明
        '''
        self.fc = nn.Sequential(
            ########## Begin ##########
            nn.Linear(256,120),
            nn.Sigmoid(),
            nn.Linear(120,84),
            nn.Sigmoid(),
            nn.Linear(84,10)

            ########## End ##########
        )

    def forward(self, img):
        '''
        这里需要定义前向计算
        '''
        ########## Begin ##########
        feature=self.conv(img)
        output=self.fc(feature.view(img.shape[0],-1))
        return output
        ########## End ##########

Alexet

import torch
from torch import nn
class AlexNet(nn.Module):
    def __init__(self):
        super(AlexNet, self).__init__()
        '''
        这里搭建卷积层,需要按顺序定义卷积层、
        激活函数、最大池化层、卷积层、激活函数、
        最大池化层、卷积层、激活函数、卷积层、
        激活函数、卷积层、激活函数、最大池化层,
        具体形状见测试说明
        '''
        self.conv = nn.Sequential(
            ########## Begin ##########
            nn.Conv2d(1, 96, kernel_size=(11, 11), stride=(4, 4)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False),
            nn.Conv2d(96, 256, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False),
            nn.Conv2d(256, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
            
            ########## End ##########
        )
        '''
        这里搭建全连接层,需要按顺序定义
        全连接层、激活函数、丢弃法、
        全连接层、激活函数、丢弃法、全连接层,
        具体形状见测试说明
        '''
        self.fc = nn.Sequential(
            ########## Begin ##########
            nn.Linear(in_features=6400, out_features=4096, bias=True),
            nn.ReLU(),
            nn.Dropout(p=0.5),
            nn.Linear(in_features=4096, out_features=4096, bias=True),
            nn.ReLU(),
            nn.Dropout(p=0.5),
            nn.Linear(in_features=4096, out_features=10, bias=True)
            
            ########## End ##########
        )
        
    def forward(self, img):
        '''
        这里需要定义前向计算
        '''
        ########## Begin ##########
        feature=self.conv(img)
        output=self.fc(feature.view(img.shape[0],-1))
        return output    
            
        ########## End ##########
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

happylife_mini

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值