大数据生态与Spark简介

一、大数据生态系统

简介:网络化数据社会与现实社会的有机融合、互动以及协调,形成大数据感知、管理、分析与应用服务的新一代信息技术架构和良性增益的闭环生态系统。在大数据处理中,并不是仅靠一个框架就能完成复杂的数据处理工作,而是根据需求需要多个框架共同完成,大致数据流的走向:
这里插入图片描述
可以看到在大数据处理中,主要有实时流处理和离线批处理两种方式,数据源是应用服务器,然后由Flume进行收集,收集后可以直接和Kafka对接,进入缓冲队列,然后由实时流处理框架进行消费,比如Spark Streaming,实时流处理框架把处理后的数据写入关系型数据库MySQL或者HBase中,最后由Web服务将统计数据读取用作其他用途比如数据可视化。另外一条离线批处理则是数据收集后写入HBase中,然后Hadoop的MapReduce框架或者Spark SQL等框架会从中取出数据跑批量处理,并将处理结果写入HDFS供给其他服务调用。

大数据生态的全家福

二、Spark简介

简介:Spark是基于内存计算的大数据分布式计算框架。Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量廉价硬件之上,形成集群。

  • Spark大数据处理框架

相较于国内外较多的大数据处理框架,Spark以其低延时的出色表现,正在成为继Hadoop的MapReduce之后,新的、最具影响的大数据框架之一。以Spark为核心的整个生态圈,最底层为分布式存储系统HDFS、Amazon S3、Mesos,或者其他格式的存储系统(如HBase);资源管理采用Mesos、YARN等集群资源管理模式,或者Spark自带的独立运行模式,以及本地运行模式。在Spark大数据处理框架中,Spark为上层多种应用提供服务。例如,Spark SQL提供SQL查询服务,性能比Hive快3~50倍;MLlib提供机器学习服务;GraphX提供图计算服务;Spark Streaming将流式计算分解成一系列短小的批处理计算,并且提供高可靠和吞吐量服务。值得说明的是,无论是Spark SQL、Spark Streaming、GraphX还是MLlib,都可以使用Spark核心API处理问题,它们的方法几乎是通用的,处理的数据也可以共享,不仅减少了学习成本,而且其数据无缝集成大大提高了灵活性。

框架中核心组件图:
在这里插入图片描述

  • Spark优点

基于Hadoop的资源管理器YARN实际上是一个弹性计算平台,作为统一的计算资源管理框架,不仅仅服务于MapReduce计算框架,而且已经实现了多种计算框架进行统一管理。这种共享集群资源的模式带来了很多好处。

  1. 快速

Spark有先进的DAG执行引擎,支持循环数据流和内存计算;Spark程序在内存中的运行速度是Hadoop MapReduce运行速度的100倍,在磁盘上的运行速度是Hadoop MapReduce运行速度的10倍。

  1. 易用

Spark支持使用Java、Scala、Python语言快速编写应用,提供超过80个高级运算符,使得编写并行应用程序变得容易。

  1. 通用

Spark可以与SQL、Streaming以及复杂的分析良好结合。基于Spark,有一系列高级工具,包括Spark SQL、MLlib(机器学习库)、GraphX和Spark Streaming,支持在一个应用中同时使用这些架构。

  1. 有效集成Hadoop

Spark可以指定Hadoop,YARN的版本来编译出合适的发行版本,Spark也能够很容易地运行在EC2、Mesos上,或以Standalone模式运行,并从HDFS、HBase、Cassandra和其他Hadoop数据源读取数据。

  1. 资源利用率高

多种框架共享资源的模式有效解决了由于应用程序数量的不均衡性导致的高峰时段任务比较拥挤,空闲时段任务比较空闲的问题;同时均衡了内存和CPU等资源的利用。

  1. 实现了数据共享

随着数据量的增加,数据移动成本越来越高,网络带宽、磁盘空间、磁盘IO都会成为瓶颈,在分散数据的情况下,会造成任务执行的成本提高,获得结果的周期变长,而数据共享模式可以让多种框架共享数据和硬件资源,大幅度减少数据分散带来的成本。

  1. 有效降低运维和管理成本

相比较一种计算框架需要一批维护人员,而运维人员较多又会带来的管理成本的上升;共享模式只需要少数的运维人员和管理人员即可完成多个框架的统一运维管理,便于运维优化和运维管理策略统一执行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值