归并排序基本介绍
归并排序(MERGE-SORT) 是利用归并的思想实现的排序方法, 该算法采用经典的分治(divide-and-conquer)策略
分治法将问题分(divide)成一些小的问题然后递归求解, 而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起, 即分而治之
归并排序思想
归并排序代码思路
- 合并时,其实是拿着原数组(arr)中两个相邻的子数组(arr1、arr2)进行合并,我们使用三个指针,来表示两个子数组在原数组中的位置
- arr[left] ~ arr[mid] 为 arr1
- arr[mid + 1] ~ arr[right] 为 arr2
如何合并?
- 首先,需要一个临时的 temp 数组,其大小与原数组 arr 一样
- 定义辅助指针 i 遍历 arr1 ,定义辅助指针 j 遍历 arr2 ,原则就是,把 arr1 和 arr2 中的数往 temp 中放,使得 temp[left] ~ temp[right] 是有序数组
- 最后把 temp 临时数组中的数据拷贝回原数组中(个人认为,最后一下次再拷贝回去就行。。。)
如何分?
- 向左递归拆分:mergeSort(arr, left, mid, temp);
- 向右递归拆分:mergeSort(arr, mid + 1, right, temp);
代码实现
归并排序算法实现代码
public class MergetSort {
public static void main(String[] args) {
int arr[] = { 10, 2, 5, 7, 14, 42, 612, 24 };
int temp[] = new int[arr.length]; // 归并排序需要一个额外空间
mergeSort(arr, 0, arr.length - 1, temp);
System.out.println("归并排序后=" + Arrays.toString(arr));
}
// 分+合方法
public static void mergeSort(int[] arr, int left, int right, int[] temp) {
if (left < right) {
int mid = (left + right) / 2; // 中间索引
// 向左递归进行分解
mergeSort(arr, left, mid, temp);
// 向右递归进行分解
mergeSort(arr, mid + 1, right, temp);
// 合并
merge(arr, left, mid, right, temp);
}
}
// 合并的方法
/**
*
* @param arr 排序的原始数组
* @param left 左边有序序列的初始索引
* @param mid 中间索引
* @param right 右边索引
* @param temp 做中转的数组
*/
public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
int i = left; // 初始化i, 左边有序序列的初始索引
int j = mid + 1; // 初始化j, 右边有序序列的初始索引
int t = 0; // 指向temp数组的当前索引
// (一)
// 先把左右两边(有序)的数据按照规则填充到temp数组
// 直到左右两边的有序序列,有一边处理完毕为止
while (i <= mid && j <= right) {// 继续
// 如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
// 即将左边的当前元素,填充到 temp数组
// 然后 t++, i++
if (arr[i] <= arr[j]) {
temp[t] = arr[i];
t += 1;
i += 1;
} else { // 反之,将右边有序序列的当前元素,填充到temp数组
temp[t] = arr[j];
t += 1;
j += 1;
}
}
// (二)
// 把有剩余数据的一边的数据依次全部填充到temp
while (i <= mid) { // 左边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[i];
t += 1;
i += 1;
}
while (j <= right) { // 右边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[j];
t += 1;
j += 1;
}
// (三)
// 将temp数组的元素拷贝到arr
// 注意,并不是每次都拷贝所有
t = 0;
int tempLeft = left; //
// 第一次合并 tempLeft = 0 , right = 1 //第二次: tempLeft = 2 right = 3 //第三次: tL=0 ri=3
// 最后一次 tempLeft = 0 right = 7
while (tempLeft <= right) {
arr[tempLeft] = temp[t];
t += 1;
tempLeft += 1;
}
}
}
测试归并排序性能
public class MergetSort {
public static void main(String[] args) {
// 测试快排的执行速度
// 创建要给80000个的随机的数组
int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
}
System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
int temp[] = new int[arr.length]; // 归并排序需要一个额外空间
mergeSort(arr, 0, arr.length - 1, temp);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
// System.out.println("归并排序后=" + Arrays.toString(arr));
}
// 分+合方法
public static void mergeSort(int[] arr, int left, int right, int[] temp) {
if (left < right) {
int mid = (left + right) / 2; // 中间索引
// 向左递归进行分解
mergeSort(arr, left, mid, temp);
// 向右递归进行分解
mergeSort(arr, mid + 1, right, temp);
// 合并
merge(arr, left, mid, right, temp);
}
}
// 合并的方法
/**
*
* @param arr 排序的原始数组
* @param left 左边有序序列的初始索引
* @param mid 中间索引
* @param right 右边索引
* @param temp 做中转的数组
*/
public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
int i = left; // 初始化i, 左边有序序列的初始索引
int j = mid + 1; // 初始化j, 右边有序序列的初始索引
int t = 0; // 指向temp数组的当前索引
// (一)
// 先把左右两边(有序)的数据按照规则填充到temp数组
// 直到左右两边的有序序列,有一边处理完毕为止
while (i <= mid && j <= right) {// 继续
// 如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
// 即将左边的当前元素,填充到 temp数组
// 然后 t++, i++
if (arr[i] <= arr[j]) {
temp[t] = arr[i];
t += 1;
i += 1;
} else { // 反之,将右边有序序列的当前元素,填充到temp数组
temp[t] = arr[j];
t += 1;
j += 1;
}
}
// (二)
// 把有剩余数据的一边的数据依次全部填充到temp
while (i <= mid) { // 左边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[i];
t += 1;
i += 1;
}
while (j <= right) { // 右边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[j];
t += 1;
j += 1;
}
// (三)
// 将temp数组的元素拷贝到arr
// 注意,并不是每次都拷贝所有
t = 0;
int tempLeft = left; //
// 第一次合并 tempLeft = 0 , right = 1 //第二次: tempLeft = 2 right = 3 //第三次: tL=0 ri=3
// 最后一次 tempLeft = 0 right = 7
while (tempLeft <= right) {
arr[tempLeft] = temp[t];
t += 1;
tempLeft += 1;
}
}
}
程序运行结果:八百万数据用了 1s ,算是比较快的了。
排序前
排序前的时间是=2020-12-03 16:29:41
排序前的时间是=2020-12-02 16:29:42
总结
先将数组分为左右两半,先执行左半边递归:
- 首先执行左递归到最深层,条件 if (left < right) 不满足,开始执行合并,合并 { 8, 4 } 到临时数组 temp中,变为有序数组 { 4, 8 } ,再拷贝回原数组 arr 中
- 然后执行最深层的右递归,条件 if (left < right) 不满足,开始执行合并,合并 { 5, 7 } 到临时数组 temp中,变为有序数组 { 5, 7 } ,再拷贝回原数组 arr 中
- 合并完后,递归回溯至上一节,开始执行合并,合并 { 4, 5, 7, 8 } 到临时数组 temp 中,变为有序数组 { 4, 5, 7, 8 } ,再拷贝回原数组 arr 中
右左半边的递归也是同样的道理