归并排序算法实现与解析

归并排序基本介绍

归并排序(MERGE-SORT) 是利用归并的思想实现的排序方法, 该算法采用经典的分治(divide-and-conquer)策略

分治法将问题分(divide)成一些小的问题然后递归求解, 而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起, 即分而治之

归并排序思想

在这里插入图片描述
归并排序代码思路

  • 合并时,其实是拿着原数组(arr)中两个相邻的子数组(arr1、arr2)进行合并,我们使用三个指针,来表示两个子数组在原数组中的位置
  • arr[left] ~ arr[mid] 为 arr1
  • arr[mid + 1] ~ arr[right] 为 arr2

如何合并?

  • 首先,需要一个临时的 temp 数组,其大小与原数组 arr 一样
  • 定义辅助指针 i 遍历 arr1 ,定义辅助指针 j 遍历 arr2 ,原则就是,把 arr1 和 arr2 中的数往 temp 中放,使得 temp[left] ~ temp[right] 是有序数组
  • 最后把 temp 临时数组中的数据拷贝回原数组中(个人认为,最后一下次再拷贝回去就行。。。)

如何分?

  • 向左递归拆分:mergeSort(arr, left, mid, temp);
  • 向右递归拆分:mergeSort(arr, mid + 1, right, temp);

在这里插入图片描述

代码实现

归并排序算法实现代码

public class MergetSort {

	public static void main(String[] args) {
        
		int arr[] = { 10, 2, 5, 7, 14, 42, 612, 24 };
		int temp[] = new int[arr.length]; // 归并排序需要一个额外空间
		mergeSort(arr, 0, arr.length - 1, temp);
		System.out.println("归并排序后=" + Arrays.toString(arr));

	}

	// 分+合方法
	public static void mergeSort(int[] arr, int left, int right, int[] temp) {
		if (left < right) {
			int mid = (left + right) / 2; // 中间索引
			// 向左递归进行分解
			mergeSort(arr, left, mid, temp);
			// 向右递归进行分解
			mergeSort(arr, mid + 1, right, temp);
			// 合并
			merge(arr, left, mid, right, temp);
		}
	}

	// 合并的方法
	/**
	 * 
	 * @param arr   排序的原始数组
	 * @param left  左边有序序列的初始索引
	 * @param mid   中间索引
	 * @param right 右边索引
	 * @param temp  做中转的数组
	 */
	public static void merge(int[] arr, int left, int mid, int right, int[] temp) {

		int i = left; // 初始化i, 左边有序序列的初始索引
		int j = mid + 1; // 初始化j, 右边有序序列的初始索引
		int t = 0; // 指向temp数组的当前索引

		// (一)
		// 先把左右两边(有序)的数据按照规则填充到temp数组
		// 直到左右两边的有序序列,有一边处理完毕为止
		while (i <= mid && j <= right) {// 继续
			// 如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
			// 即将左边的当前元素,填充到 temp数组
			// 然后 t++, i++
			if (arr[i] <= arr[j]) {
				temp[t] = arr[i];
				t += 1;
				i += 1;
			} else { // 反之,将右边有序序列的当前元素,填充到temp数组
				temp[t] = arr[j];
				t += 1;
				j += 1;
			}
		}

		// (二)
		// 把有剩余数据的一边的数据依次全部填充到temp
		while (i <= mid) { // 左边的有序序列还有剩余的元素,就全部填充到temp
			temp[t] = arr[i];
			t += 1;
			i += 1;
		}

		while (j <= right) { // 右边的有序序列还有剩余的元素,就全部填充到temp
			temp[t] = arr[j];
			t += 1;
			j += 1;
		}

		// (三)
		// 将temp数组的元素拷贝到arr
		// 注意,并不是每次都拷贝所有
		t = 0;
		int tempLeft = left; //
		// 第一次合并 tempLeft = 0 , right = 1 //第二次: tempLeft = 2 right = 3 //第三次: tL=0 ri=3
		// 最后一次 tempLeft = 0 right = 7
		while (tempLeft <= right) {
			arr[tempLeft] = temp[t];
			t += 1;
			tempLeft += 1;
		}

	}

}

测试归并排序性能

public class MergetSort {

	public static void main(String[] args) {
		
		// 测试快排的执行速度
		// 创建要给80000个的随机的数组
		int[] arr = new int[8000000];
		for (int i = 0; i < 8000000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}
		System.out.println("排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);

		int temp[] = new int[arr.length]; // 归并排序需要一个额外空间
		mergeSort(arr, 0, arr.length - 1, temp);

		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);

		// System.out.println("归并排序后=" + Arrays.toString(arr));
	}

	// 分+合方法
	public static void mergeSort(int[] arr, int left, int right, int[] temp) {
		if (left < right) {
			int mid = (left + right) / 2; // 中间索引
			// 向左递归进行分解
			mergeSort(arr, left, mid, temp);
			// 向右递归进行分解
			mergeSort(arr, mid + 1, right, temp);
			// 合并
			merge(arr, left, mid, right, temp);
		}
	}

	// 合并的方法
	/**
	 * 
	 * @param arr   排序的原始数组
	 * @param left  左边有序序列的初始索引
	 * @param mid   中间索引
	 * @param right 右边索引
	 * @param temp  做中转的数组
	 */
	public static void merge(int[] arr, int left, int mid, int right, int[] temp) {

		int i = left; // 初始化i, 左边有序序列的初始索引
		int j = mid + 1; // 初始化j, 右边有序序列的初始索引
		int t = 0; // 指向temp数组的当前索引

		// (一)
		// 先把左右两边(有序)的数据按照规则填充到temp数组
		// 直到左右两边的有序序列,有一边处理完毕为止
		while (i <= mid && j <= right) {// 继续
			// 如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
			// 即将左边的当前元素,填充到 temp数组
			// 然后 t++, i++
			if (arr[i] <= arr[j]) {
				temp[t] = arr[i];
				t += 1;
				i += 1;
			} else { // 反之,将右边有序序列的当前元素,填充到temp数组
				temp[t] = arr[j];
				t += 1;
				j += 1;
			}
		}

		// (二)
		// 把有剩余数据的一边的数据依次全部填充到temp
		while (i <= mid) { // 左边的有序序列还有剩余的元素,就全部填充到temp
			temp[t] = arr[i];
			t += 1;
			i += 1;
		}

		while (j <= right) { // 右边的有序序列还有剩余的元素,就全部填充到temp
			temp[t] = arr[j];
			t += 1;
			j += 1;
		}

		// (三)
		// 将temp数组的元素拷贝到arr
		// 注意,并不是每次都拷贝所有
		t = 0;
		int tempLeft = left; //
		// 第一次合并 tempLeft = 0 , right = 1 //第二次: tempLeft = 2 right = 3 //第三次: tL=0 ri=3
		// 最后一次 tempLeft = 0 right = 7
		while (tempLeft <= right) {
			arr[tempLeft] = temp[t];
			t += 1;
			tempLeft += 1;
		}

	}

}

程序运行结果:八百万数据用了 1s ,算是比较快的了。

排序前
排序前的时间是=2020-12-03 16:29:41
排序前的时间是=2020-12-02 16:29:42

总结

先将数组分为左右两半,先执行左半边递归:

  • 首先执行左递归到最深层,条件 if (left < right) 不满足,开始执行合并,合并 { 8, 4 } 到临时数组 temp中,变为有序数组 { 4, 8 } ,再拷贝回原数组 arr 中
  • 然后执行最深层的右递归,条件 if (left < right) 不满足,开始执行合并,合并 { 5, 7 } 到临时数组 temp中,变为有序数组 { 5, 7 } ,再拷贝回原数组 arr 中
  • 合并完后,递归回溯至上一节,开始执行合并,合并 { 4, 5, 7, 8 } 到临时数组 temp 中,变为有序数组 { 4, 5, 7, 8 } ,再拷贝回原数组 arr 中

右左半边的递归也是同样的道理

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值