【c++】动态规划入门

动态规划

今天,我们来讲讲动态规划这东西
基本思想动态规划通常用于求解某种最优性质的问题。将带求解问题分解为若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。同时,用表来记录所有已解子问题的答案以节省时间。
让我们来看一道题目

斐波拉契数列
1,1,2,3,5,8,13,21,34,55,89…让我们求第n项的数为什么

递归啊!!!
附代码

int  dfs (int n)
{
    if (n == 1) return 1;
    if (n == 2) return 2;
    return dfs(n - 1) + dfs(n - 2);
}

此为递归无优化的过程
为了运行得更快,我们需要剪枝……
那么如何剪枝呢?
我们可以运用记忆化搜索的方式:
记忆化搜索,就是让程序实现自动记忆已经搜索过的东西,这样如果再次搜到这个东西,就可以直接调用了
代码:

int  fib(int n)
 {
      if (n==1||n==2) return 1; 
      if (f[n]!=0) return f[n];//这里就是记忆化搜索的精髓
      return f[n]=fib(n-1)+fib(n-2);//这里也是
 } 

这里的记忆化搜索,调用了函数,那么我们是否可以把函数转变成数组呢?
答案当然是肯定的!!!
这就引出了我们的动态规划
为了减少重复计算,我们可以用数组把计算所需要的所有信息都储存起来。
这样我们只需要调用数组,而不需要调用函数,时间复杂度为O(n)。

递归到动规的一般转化方法

递归函数有n个参数,就定义一个n维的数组,数组的下标是递归函数参数的取值范围,数组元素的值是递归函数的返回值,这样就可以从边界值开始, 逐步填充数组,相当于计算递归函数值的逆过程。
动态规划代码:

int dp(int n)
{	
   f[1]=1;
   f[2]=2;	
   for (int i=3;i<=n;i++)		
     f[i]=f[i-1]+f[i-2]; 
   return f[n];
}

——————————————————————————————————————————————————————————————————————

动态规划的解题步骤

1. 将原问题分解为子问题
把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。子问题都解决,原问题即解决(数字三角形例)。
子问题的解一旦求出就会被保存,所以每个子问题只需求解一次。
2.确定状态
在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状 态”。一个“状态”对应于一个或多个子问题, 所谓某个“状态”下的“值”,就是这个“状 态”所对应的子问题的解。
所有“状态”的集合,构成问题的“状态空间”。“状态空间”的大小,与用动态规划解决问题的时间复杂度直接相关。 在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个问题的状态空间里一共就有N×(N+1)/2个状态。
整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。
3.确定一些初始状态(边界状态)的值
以“数字三角形”为例,初始状态就是上边的数字,值就是最上方的数字值。
4.确定状态转移方程
定义出什么是“状态”,以及在该“状态”下的“值”后,就要找出不同的状态之间如何迁移――即如何从一个或多个“值”已知的 “状态”,求出另一个“状态”的“值”(递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。
数字三角形的状态转移方程:f[i,j]=max{f[i-1,j,f[i-1,j-1]+a[i,j]

  • 阶段:
  • 状态:
  • 边界:
  • 决策:
  • 转移方程:

小白一枚,不足之处尚多,请多多指教!!!

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值