算法分析与设计作业11:最优前缀码

1.问题

给出n个字符的频率,给每个字符赋予一个01编码串,使得任意一个字符的编码不是另一个字符编码的前缀,而且编码后总长度(每个字符的频率与编码长度乘积的总和)尽量小。

2.解析

输入一个n个节点的树。
将每个节点按照权重排序,每次选出最小的两个节点,做和形成新的节点,构造出哈夫曼树。
左子树为0,右子树为1。
在这里插入图片描述

3.设计

int Min(HuffmanTree HT, int n) {
	unsigned int f_min = 100;
	int flag = 0;
	for (int i = 1; i <= n; ++i) {
		if ((HT + i)->weight < f_min && (HT + i)->parent == 0) {
			f_min = (HT + i)->weight;
			flag = i;
		}
	}
	(HT + flag)->parent = 1;
	return flag;
}

void Select(HuffmanTree* HT, int n, int* s1, int* s2) {
	int tmp = 0; 
	*s1 = Min(*HT, n);
	*s2 = Min(*HT, n);
	if ((*HT + *s1)->weight > (*HT + *s2)->weight) {
		tmp = *s1;
		*s1 = *s2;
		*s2 = tmp;
	}
}
void CreateHuffmanTree(HuffmanTree* HT, int* w, int n) {
	int m = 0; 
	HuffmanTree adjust = NULL; 
	int i = 0; 
	int s1 = 0;
	int s2 = 0;
	if (n <= 1) {
		return;
	}
	m = 2 * n - 1;
	*HT = (HuffmanTree)malloc((m + 1) * sizeof(HTNode));
	if (!*HT) {
		exit(-1);
	}
	for (adjust = *HT + 1, i = 1; i <= n; ++adjust, ++i) {
		adjust->weight = *(w + i - 1);
		adjust->parent = 0;
		adjust->lchild = 0;
		adjust->rchild = 0;
	}
	for (; i <= m; ++i, ++adjust) {
		adjust->parent = 0;
	}
	for (i = n + 1; i <= m; ++i) {
		Select(HT, i - 1, &s1, &s2);
		(*HT + s1)->parent = (*HT + s2)->parent = i;
		(*HT + i)->lchild = s1;
		(*HT + i)->rchild = s2;
		(*HT + i)->weight = (*HT + s1)->weight + (*HT + s2)->weight;
	}
}

4.分析

时间复杂度:O(nlogn)

5.源码

https://github.com/RussellWu728/Algorithm_Homework/tree/master/%E4%BD%9C%E4%B8%9A11%E2%80%94Huffman

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值