package com.atguigu.huffmancode;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
public class HuffmanCode {
public static void main(String[] args) {
String content = "i like like like java do you like a java";
byte[] contentBytes = content.getBytes();
System.out.println(contentBytes.length);//40
//测试第一步:将字节数组存储为一个List
List<Node> nodes = getNodes(contentBytes);
System.out.println("nodes="+nodes);
//测试第二步,创建的赫夫曼树
System.out.println("赫夫曼树");
Node huffmanTreeRoot= createHuffmanTree(nodes);
System.out.println("前序遍历");
huffmanTreeRoot.preOrder();
//测试第三步:生成赫夫曼编码
Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
System.out.println("生成的赫夫曼编码表"+huffmanCodes);
//测试第四步:完成压缩
byte[] huffmanCodeBytes = zip(contentBytes, huffmanCodes);
System.out.println("huffmanCodeBytes="+ Arrays.toString(huffmanCodeBytes));//压缩后 长度变小
//测试第五步:将前面的方法封装成一个方法
byte[] huffmanCodesBytes = huffmanZip(contentBytes);
System.out.println("huffmanCodeBytes="+ Arrays.toString(huffmanCodeBytes));
}
/**
* 第五步:
* 使用一个方法将前面的方法封装起来
* @param bytes 原始的字符串对应的字节数组
* @return 是经过 赫夫曼编码处理后的字节数组(压缩后的数组)
*/
private static byte[] huffmanZip(byte[] bytes) {
List<Node> nodes = getNodes(bytes);
//根据 nodes 创建的赫夫曼树
Node huffmanTreeRoot = createHuffmanTree(nodes);
//对应的赫夫曼编码(根据 赫夫曼树)
Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
//根据生成的赫夫曼编码,压缩得到压缩后的赫夫曼编码字节数组
byte[] huffmanCodeBytes = zip(bytes, huffmanCodes);
return huffmanCodeBytes;
}
/**
* 将一个byte 转成一个二进制的字符串, 如果看不懂,可以参考我讲的Java基础 二进制的原码,反码,补码
* @param b 传入的 byte
* @param flag 标志是否需要补高位如果是true ,表示需要补高位,如果是false表示不补, 如果是最后一个字节,无需补高位
* @return 是该b 对应的二进制的字符串,(注意是按补码返回)
*/
private static String byteToBitString(boolean flag, byte b) {
//使用变量保存 b
int temp = b; //将 b 转成 int
//如果是正数我们还存在补高位
if(flag) {
temp |= 256; //按位与 256 1 0000 0000 | 0000 0001 => 1 0000 0001
}
String str = Integer.toBinaryString(temp); //返回的是temp对应的二进制的补码
if(flag) {
return str.substring(str.length() - 8);
} else {
return str;
}
}
/**
* 第四步:
* 编写一个方法,将字符串对应的byte[] 数组,通过生成的赫夫曼编码表,返回一个赫夫曼编码 压缩后的byte[]
* @param bytes 这时原始的字符串对应的 byte[]
* @param huffmanCodes 生成的赫夫曼编码map
* @return 返回赫夫曼编码处理后的 byte[]
* 举例: String content = "i like like like java do you like a java"; =》 byte[] contentBytes = content.getBytes();
* 返回的是 字符串 "1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100"
* => 对应的 byte[] huffmanCodeBytes ,即 8位对应一个 byte,放入到 huffmanCodeBytes
* huffmanCodeBytes[0] = 10101000(补码) => byte [推导 10101000=> 10101000 - 1 => 10100111(反码)=> 11011000= -88 ]
* huffmanCodeBytes[1] = -88
*/
private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes){
//1.利用 huffmanCodes 将 bytes 转成 赫夫曼编码对应的字符串"1010100010111111..."
StringBuilder stringBuilder = new StringBuilder();
//遍历bytes数组
for(byte b : bytes){
stringBuilder.append(huffmanCodes.get(b));
}
// System.out.println("测试 stringBuilder~~~=" + stringBuilder.toString());//"1010100010111111..."
//将 "1010100010111111110..." 转成 byte[]
//统计返回 byte[] huffmanCodeBytes 长度
//一句话 int len = (stringBuilder.length() + 7) / 8;//等价于下面
int len;
if(stringBuilder.length() % 8 == 0){
len = stringBuilder.length() / 8;
}else{
len = stringBuilder.length() / 8 + 1;
}
//创建存储压缩后的byte数组
byte[] huffmanCodeBytes = new byte[len];
int index = 0;//记录是第几个byte
for(int i = 0; i < stringBuilder.length();i+=8){//因为是每8位对应一个byte,所以步长 +8
String strByte;
if(i+8 > stringBuilder.length()){//不够8位
strByte = stringBuilder.substring(i);
}else{
strByte = stringBuilder.substring(i, i+8);
}
//将strByte 转成一个byte,放入到 huffmanCodeBytes
huffmanCodeBytes[index] = (byte)Integer.parseInt(strByte, 2);//2表示二进制
index++;
}
return huffmanCodeBytes;
}
/**
* 第三步:
* 生成赫夫曼树对应的赫夫曼编码
*/
//思路:
//1. 将赫夫曼编码表存放在 Map<Byte,String> 形式
// 生成的赫夫曼编码表{32=01, 97=100, 100=11000, 117=11001, 101=1110, 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011}
static Map<Byte, String> huffmanCodes = new HashMap<Byte,String>();
//2. 在生成赫夫曼编码表示,需要去拼接路径, 定义一个StringBuilder 存储某个叶子结点的路径
static StringBuilder stringBuilder = new StringBuilder();
//3.为了调用方便,我们重载 getCodes
private static Map<Byte, String> getCodes(Node root){
if(root == null){
return null;
}
//处理root的左子树
getCodes(root.left, "0", stringBuilder);
//处理root的右子树
getCodes(root.right, "1", stringBuilder);
return huffmanCodes;
}
/**
* 功能:将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合
* @param node 传入结点
* @param code 路径: 左子结点是 0, 右子结点 1
* @param stringBuilder 用于拼接路径
*/
private static void getCodes(Node node, String code, StringBuilder stringBuilder){
StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);
//将code 加入到 stringBuilder2
stringBuilder2.append(code);
if(node != null){//如果node == null不处理
//判断当前node 是叶子结点还是非叶子结点
if(node.data == null){//非叶子结点
//递归处理
//向左递归
getCodes(node.left, "0", stringBuilder2);
//向右递归
getCodes(node.right, "1", stringBuilder2);
}else{//说明是一个叶子结点 node.data != null说明是叶子结点
//就表示找到某个叶子结点的最后
huffmanCodes.put(node.data, stringBuilder2.toString());
}
}
}
//前序遍历
private static void preOrder(Node root){
if(root != null){
root.preOrder();
}else{
System.out.println("赫夫曼树为空");
}
}
/**
* 第一步:将字节数组[i, ,l,i,k,...]存储为一个List
* @param bytes 接收字节数组
* @return 返回的就是 List 形式 [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......],
*/
private static List<Node> getNodes(byte[] bytes){
//1创建一个ArrayList
ArrayList<Node> nodes = new ArrayList<Node>();
//遍历 bytes , 统计 每一个byte出现的次数->map[key,value]
Map<Byte, Integer> counts = new HashMap<>();
for(byte b : bytes){
Integer count = (Integer) counts.get(b);
if(count == null){ // Map还没有这个字符数据,第一次
counts.put(b, 1);
}else{
counts.put(b, count + 1);
}
}
//把每一个键值对转成一个Node 对象,并加入到nodes集合
//遍历map
for(Map.Entry<Byte, Integer> entry: counts.entrySet()){
nodes.add(new Node(entry.getKey(), entry.getValue()));
}
return nodes;
}
/**
* 第二步:
* @Description 通过List 创建对应的赫夫曼树
* @author DD
* @date 2022年1月8日下午8:54:59
* @param nodes
* @return
*/
private static Node createHuffmanTree(List<Node> nodes){
while (nodes.size() > 1){
//排序,从小到大
Collections.sort(nodes);
//取出第一颗最小的二叉树
Node leftNode = nodes.get(0);
//取出第二颗最小的二叉树
Node rightNode = nodes.get(1);
//创建一颗新的二叉树,它的根节点 没有data, 只有权值
Node parent = new Node(null, leftNode.weight + rightNode.weight);
parent.left = leftNode;
parent.right = rightNode;
//将已经处理的两颗二叉树从nodes删除
nodes.remove(leftNode);
nodes.remove(rightNode);
//将新的二叉树,加入到nodes
nodes.add(parent);
}
//nodes 最后的结点,就是赫夫曼树的根结点
return nodes.get(0);
}
}
//创建Node, 带数据和权值
class Node implements Comparable<Node>{
Byte data; //存放数据(字符)本身,比如'a' => 97 ' ' => 32
int weight; //权值, 表示字符出现的次数
Node left;
Node right;
public Node(Byte data, int weight){
this.data = data;
this.weight = weight;
}
@Override
public int compareTo(Node o) {
// TODO Auto-generated method stub
return this.weight = o.weight;//从小到大排序
}
@Override
public String toString() {
return "Node [data=" + data + ", weight=" + weight + "]";
}
//前序遍历
public void preOrder(){
System.out.println(this);
if(this.left != null){
this.left.preOrder();
}
if(this.right != null){
this.right.preOrder();
}
}
}