9.3 赫夫曼编码(创建赫夫曼树、生成赫夫曼编码、实现数据压缩)——【Java数据结构与算法】

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

package com.atguigu.huffmancode;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;

public class HuffmanCode {

	
	public static void main(String[] args) {
		
		String content = "i like like like java do you like a java";
		byte[] contentBytes = content.getBytes();
		System.out.println(contentBytes.length);//40
		
		//测试第一步:将字节数组存储为一个List
		List<Node> nodes = getNodes(contentBytes);
		System.out.println("nodes="+nodes);
		
		//测试第二步,创建的赫夫曼树
		System.out.println("赫夫曼树");
		Node huffmanTreeRoot= createHuffmanTree(nodes);
		System.out.println("前序遍历");
		huffmanTreeRoot.preOrder();
		
		//测试第三步:生成赫夫曼编码
		Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
		System.out.println("生成的赫夫曼编码表"+huffmanCodes);
		
		//测试第四步:完成压缩
		byte[] huffmanCodeBytes = zip(contentBytes, huffmanCodes);
		System.out.println("huffmanCodeBytes="+ Arrays.toString(huffmanCodeBytes));//压缩后 长度变小
		
		//测试第五步:将前面的方法封装成一个方法
		byte[] huffmanCodesBytes = huffmanZip(contentBytes);
		System.out.println("huffmanCodeBytes="+ Arrays.toString(huffmanCodeBytes));
						
	}

	/**
	 * 第五步:
	 * 使用一个方法将前面的方法封装起来
	 * @param bytes 原始的字符串对应的字节数组
	 * @return 是经过 赫夫曼编码处理后的字节数组(压缩后的数组)
	 */
	private static byte[] huffmanZip(byte[] bytes) {
		List<Node> nodes = getNodes(bytes);
		//根据 nodes 创建的赫夫曼树
		Node huffmanTreeRoot = createHuffmanTree(nodes);
		//对应的赫夫曼编码(根据 赫夫曼树)
		Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
		//根据生成的赫夫曼编码,压缩得到压缩后的赫夫曼编码字节数组
		byte[] huffmanCodeBytes = zip(bytes, huffmanCodes);
		return huffmanCodeBytes;
	}
	 
	
	/**
	 * 将一个byte 转成一个二进制的字符串, 如果看不懂,可以参考我讲的Java基础 二进制的原码,反码,补码
	 * @param b 传入的 byte
	 * @param flag 标志是否需要补高位如果是true ,表示需要补高位,如果是false表示不补, 如果是最后一个字节,无需补高位
	 * @return 是该b 对应的二进制的字符串,(注意是按补码返回)
	 */
	private static String byteToBitString(boolean flag, byte b) {
		//使用变量保存 b
		int temp = b; //将 b 转成 int
		//如果是正数我们还存在补高位
		if(flag) {
			temp |= 256; //按位与 256  1 0000 0000  | 0000 0001 => 1 0000 0001
		}
		String str = Integer.toBinaryString(temp); //返回的是temp对应的二进制的补码
		if(flag) {
			return str.substring(str.length() - 8);
		} else {
			return str;
		}
	}
	

	/**
	 * 第四步:
	 * 编写一个方法,将字符串对应的byte[] 数组,通过生成的赫夫曼编码表,返回一个赫夫曼编码 压缩后的byte[]
	 * @param bytes 这时原始的字符串对应的 byte[]
	 * @param huffmanCodes 生成的赫夫曼编码map
	 * @return 返回赫夫曼编码处理后的 byte[] 
	 * 举例: String content = "i like like like java do you like a java"; =》 byte[] contentBytes = content.getBytes();
	 * 返回的是 字符串 "1010100010111111110010001011111111001000101111111100100101001101110001110000011011101000111100101000101111111100110001001010011011100"
	 * => 对应的 byte[] huffmanCodeBytes  ,即 8位对应一个 byte,放入到 huffmanCodeBytes
	 * huffmanCodeBytes[0] =  10101000(补码) => byte  [推导  10101000=> 10101000 - 1 => 10100111(反码)=> 11011000= -88 ]
	 * huffmanCodeBytes[1] = -88
	 */
	private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes){
		//1.利用 huffmanCodes 将  bytes 转成  赫夫曼编码对应的字符串"1010100010111111..."
		StringBuilder stringBuilder = new StringBuilder();
		//遍历bytes数组
		for(byte b : bytes){
			stringBuilder.append(huffmanCodes.get(b));			
		}
		
//		System.out.println("测试 stringBuilder~~~=" + stringBuilder.toString());//"1010100010111111..."
		
		//将 "1010100010111111110..." 转成 byte[]
		
		//统计返回  byte[] huffmanCodeBytes 长度
		//一句话 int len = (stringBuilder.length() + 7) / 8;//等价于下面
		int len;
		if(stringBuilder.length() % 8 == 0){
			len = stringBuilder.length() / 8;
		}else{
			len = stringBuilder.length() / 8 + 1;
		}
		//创建存储压缩后的byte数组
		byte[] huffmanCodeBytes = new byte[len];
		int index = 0;//记录是第几个byte
		for(int i = 0; i < stringBuilder.length();i+=8){//因为是每8位对应一个byte,所以步长 +8
			String strByte;
			if(i+8 > stringBuilder.length()){//不够8位
				strByte = stringBuilder.substring(i);
			}else{
				strByte = stringBuilder.substring(i, i+8);
			}
			//将strByte 转成一个byte,放入到 huffmanCodeBytes
			huffmanCodeBytes[index] = (byte)Integer.parseInt(strByte, 2);//2表示二进制
			index++;
		}
		return huffmanCodeBytes;
				
	}
	
	
	
	
	
	/**
	 * 第三步:
	 * 生成赫夫曼树对应的赫夫曼编码
	 */
	//思路:
	//1. 将赫夫曼编码表存放在 Map<Byte,String> 形式
	//   生成的赫夫曼编码表{32=01, 97=100, 100=11000, 117=11001, 101=1110, 118=11011, 105=101, 121=11010, 106=0010, 107=1111, 108=000, 111=0011}
	static Map<Byte, String> huffmanCodes = new HashMap<Byte,String>();
	//2. 在生成赫夫曼编码表示,需要去拼接路径, 定义一个StringBuilder 存储某个叶子结点的路径
	static StringBuilder stringBuilder = new StringBuilder();
	
	//3.为了调用方便,我们重载 getCodes
	private static Map<Byte, String> getCodes(Node root){
		if(root == null){
			return null;
		}
		//处理root的左子树
		getCodes(root.left, "0", stringBuilder);
		//处理root的右子树
		getCodes(root.right, "1", stringBuilder);
		return huffmanCodes;
		
	}
	
	/**
	 * 功能:将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合
	 * @param node  传入结点
	 * @param code  路径: 左子结点是 0, 右子结点 1
	 * @param stringBuilder 用于拼接路径
	 */
	private static void getCodes(Node node, String code, StringBuilder stringBuilder){
		StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);
		//将code 加入到 stringBuilder2
		stringBuilder2.append(code);
		
		if(node != null){//如果node == null不处理
			//判断当前node 是叶子结点还是非叶子结点
			if(node.data == null){//非叶子结点  
				//递归处理
				//向左递归
				getCodes(node.left, "0", stringBuilder2);
				//向右递归
				getCodes(node.right, "1", stringBuilder2);
			}else{//说明是一个叶子结点  node.data != null说明是叶子结点
				//就表示找到某个叶子结点的最后
				huffmanCodes.put(node.data, stringBuilder2.toString());
			}			
		}
	}
	
	
	
	//前序遍历
	private static void preOrder(Node root){
		if(root != null){
			root.preOrder();
		}else{
			System.out.println("赫夫曼树为空");
		}
	}
	
	
	/**
	 * 第一步:将字节数组[i, ,l,i,k,...]存储为一个List
	 * @param bytes 接收字节数组
	 * @return 返回的就是 List 形式   [Node[date=97 ,weight = 5], Node[]date=32,weight = 9]......],
	 */
	private static List<Node> getNodes(byte[] bytes){
		//1创建一个ArrayList
		ArrayList<Node> nodes = new ArrayList<Node>();
		
		//遍历 bytes , 统计 每一个byte出现的次数->map[key,value]
		Map<Byte, Integer> counts = new HashMap<>();
		for(byte b : bytes){
			Integer count = (Integer) counts.get(b);
			if(count == null){ // Map还没有这个字符数据,第一次
				counts.put(b, 1);
			}else{
				counts.put(b, count + 1);
			}			
		}
		//把每一个键值对转成一个Node 对象,并加入到nodes集合
		//遍历map
		for(Map.Entry<Byte, Integer> entry: counts.entrySet()){
			nodes.add(new Node(entry.getKey(), entry.getValue()));			
		}
		return nodes;	
		
	}
	
	
	
	/**
	 * 第二步:
	* @Description 通过List 创建对应的赫夫曼树
	* @author DD
	* @date 2022年1月8日下午8:54:59
	* @param nodes
	* @return
	 */
	private static Node createHuffmanTree(List<Node> nodes){
		while (nodes.size() > 1){
			//排序,从小到大
			Collections.sort(nodes);
			//取出第一颗最小的二叉树
			Node leftNode = nodes.get(0);
			//取出第二颗最小的二叉树
			Node rightNode = nodes.get(1);
			//创建一颗新的二叉树,它的根节点 没有data, 只有权值
			Node parent = new Node(null, leftNode.weight + rightNode.weight);
			parent.left = leftNode;
			parent.right = rightNode;
			
			//将已经处理的两颗二叉树从nodes删除
			nodes.remove(leftNode);
			nodes.remove(rightNode);
			//将新的二叉树,加入到nodes
			nodes.add(parent);
						
		}
		
		//nodes 最后的结点,就是赫夫曼树的根结点
		return nodes.get(0);
	}
			
}




//创建Node, 带数据和权值
class Node implements Comparable<Node>{
	Byte data; //存放数据(字符)本身,比如'a' => 97 ' ' => 32
	int weight; //权值, 表示字符出现的次数
	Node left;
	Node right;
	public Node(Byte data, int weight){
		this.data = data;
		this.weight = weight;
	}

	@Override
	public int compareTo(Node o) {
		// TODO Auto-generated method stub
		return this.weight = o.weight;//从小到大排序
	}

	@Override
	public String toString() {
		return "Node [data=" + data + ", weight=" + weight + "]";
	}
	
	//前序遍历
	public void preOrder(){
		System.out.println(this);
		if(this.left != null){
			this.left.preOrder();
		}
		if(this.right != null){
			this.right.preOrder();
		}
	}
	
	
	
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DZSpace

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值