class Solution {
public int minCostClimbingStairs(int[] cost) {
if (cost == null || cost.length == 0) {
return 0;
}
if (cost.length == 1) {
return cost[0];
}
//dp[i]到达第i个台阶所花费的最少力气dp[i](注意这里有个规则:认为到达的最后一步一定要花费!!!!)
//注意本题问的是到达楼梯顶部,而这里的dp[i]是指到达第i个台阶,一定注意dp[i]的定义
int[] dp = new int[cost.length];
//初始化
dp[0] = cost[0];
dp[1] = cost[1];
for (int i = 2; i < cost.length; i++) {
dp[i] = Math.min(dp[i-1], dp[i-2]) + cost[i];//注意这里,+ cost[i] 放在最后,表明最后一步一定要花费!
}
return Math.min(dp[cost.length - 1], dp[cost.length - 2]);
}
}
使用最小花费爬楼梯——【LeetCode】
最新推荐文章于 2024-11-10 14:06:08 发布
这篇博客介绍了一个使用动态规划解决最小成本爬楼梯问题的Java实现。通过定义dp数组,博主详细解释了如何从已知的前两个台阶成本推导出到达任意台阶的最小成本,并最终返回到达楼梯顶部的最小成本。博客强调了最后一步必须花费力气这一规则在动态规划过程中的应用。
摘要由CSDN通过智能技术生成