使用最小花费爬楼梯——【LeetCode】

这篇博客介绍了一个使用动态规划解决最小成本爬楼梯问题的Java实现。通过定义dp数组,博主详细解释了如何从已知的前两个台阶成本推导出到达任意台阶的最小成本,并最终返回到达楼梯顶部的最小成本。博客强调了最后一步必须花费力气这一规则在动态规划过程中的应用。
摘要由CSDN通过智能技术生成

在这里插入图片描述

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        if (cost == null || cost.length == 0) {
            return 0;
        }
        if (cost.length == 1) {
            return cost[0];
        }

        //dp[i]到达第i个台阶所花费的最少力气dp[i](注意这里有个规则:认为到达的最后一步一定要花费!!!!)
        //注意本题问的是到达楼梯顶部,而这里的dp[i]是指到达第i个台阶,一定注意dp[i]的定义
        int[] dp = new int[cost.length];
        //初始化
        dp[0] = cost[0];
        dp[1] = cost[1];
        for (int i = 2; i < cost.length; i++) {
            dp[i] = Math.min(dp[i-1], dp[i-2]) + cost[i];//注意这里,+ cost[i] 放在最后,表明最后一步一定要花费!
        }

        return Math.min(dp[cost.length - 1], dp[cost.length - 2]);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DZSpace

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值