最短路 Floyd + Dijkstra

1. 问题

在一给定的有向图 G < V , E > G<V, E> G<V,E> 中,V代表点集, E < u , v , w > E<u, v,w> E<u,v,w> 代表连接顶点 u u u 与顶点 v v v 且边权为w的边集。给定顶点 S S S 和起点 E E E,要求出 S S S 点到 E E E 点的总权值的最小路径,即最短路问题。
  • F l o y d Floyd Floyd 算法求解下图各个顶点的最短距离,并求得距离矩阵(顶点之间的最短距离矩阵)。

    在这里插入图片描述

  • 对于下图使用 D i j k s t r a Dijkstra Dijkstra 算法求由顶点 a a a 到顶点 h h h 的最短路径。

在这里插入图片描述

2. 解析

F l o y d Floyd Floyd 算法:
  • F l o y d Floyd Floyd 算法的本质是 d p dp dp 状态转移,设三维数组 m p [ k ] [ i ] [ j ] mp[k][i][j] mp[k][i][j] k k k 代表可以经过 [ 1 , k ] [1,k] [1,k] 区间中的顶点(可以经过也可以不经过其中某个点), i i i j j j 分别代表起点和终点,那么 m p [ k ] [ i ] [ j ] mp[k][i][j] mp[k][i][j] 代表能够经过 [ 1 , k ] [1,k] [1,k] 区间结点的 i i i 结点到 j j j 结点的最短距离。对于从 i i i 结点到 j j j 结点有两个状态,即我们可以选择不经过 k k k 结点,也可以选择经过 k k k 结点。那么状态转移方程如下: m p [ k ] [ i ] [ j ] = m i n ( m p [ k − 1 ] [ i ] [ j ] , m p [ k − 1 ] [ i ] [ k ] + m p [ k − 1 ] [ k ] [ j ] ) mp[k][i][j] = min(mp[k-1][i][j],mp[k-1][i][k]+mp[k-1][k][j]) mp[k][i][j]=min(mp[k1][i][j],mp[k1][i][k]+mp[k1][k][j])
  • k k k 循环必须放在最外层,因为 k k k 同时也代表了当前状态转移的层数。如果 k k k 循环放在最内层,无法确保状态转移的正确性,例如我们必须先递推完 ( k = 1 , m p [ k ] [ i ] [ j ] ) (k=1,mp[k][i][j]) (k=1,mp[k][i][j]) 的情况,我们才能通过 k = 1 k=1 k=1 这层状态,转移到 ( k = 2 , m p [ k ] [ i ] [ j ] ) (k=2,mp[k][i][j]) (k=2,mp[k][i][j]) 这层状态上, m p [ 0 ] [ i ] [ j ] mp[0][i][j] mp[0][i][j] 为最初始邻接矩阵图的状态,这里还可以使用滚动数组进行空间压缩。
for (int k=1;k<=n;k++) {
    for (int i=1;i<=n;i++) {
        for (int j=1;j<=n;j++) {
            mp[k][i][j] = min(mp[k-1][i][j],mp[k-1][i][k]+mp[k-1][k][j]);
            //通过滚动数组对第一维进行压缩,就可以得到如下二维的dp数组
            mp[i][j] = min(mp[i][j],mp[i][k]+mp[k][j]);
        }
    }
}
D i j k s t r a Dijkstra Dijkstra 算法:
  • D i j k s t r a Dijkstra Dijkstra 算法基于贪心算法,通过 S e l e c t Select Select S l a c k Slack Slack 两个操作不断更新源点 S S S 到点 V V V 的距离,最后得到的 d i s [ i ] dis[i] dis[i] 数组即源点 S S S 到点 i i i 的最近距离,若 d i s [ i ] dis[i] dis[i] 数组的值仍等于初始化的无穷大,说明源点 S S S 无法到达点 i i i
  • S e l e c t : Select: Select: 即点 V V V 的选择操作,我们每次需要从图中找到一个距离源点 S S S 最近的点 V V V,即当前 d i s [ V ] dis[V] dis[V] 最小的点,并且满足这个点 V V V 未被 v i s vis vis 数组标记,然后将其标记,然后对这个点 V V V 相连的边进行 S l a c k Slack Slack 操作。
  • S l a c k : Slack: Slack: 即边的松弛操作,我们遍历 S e l e c t Select Select 得到的点 V V V 所有的边,如果存在点 K K K d i s [ K ] dis[K] dis[K] 大于 d i s [ V ] + m p [ V ] [ K ] dis[V]+mp[V][K] dis[V]+mp[V][K],我们就可以成功松弛这条边,让源点 S S S 到点 K K K 的最短路径更新为经过点 V V V 到达点 K K K 的最短路径,使得源点 S S S K K K 的最短距离更新,即更新 d i s [ K ] dis[K] dis[K]

3. 设计

Floyd算法

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5+10;

int n,m,k;
int mp[110][110];


/**
 * 存单向边
 */
void add(int u,int v,int w) {
    mp[u][v] = min(mp[u][v],w);
}

/**
 * Floyd算法
 */
void floyd() {
    for (int k=1;k<=n;k++) {
        for (int i=1;i<=n;i++) {
            for (int j=1;j<=n;j++) {
                mp[i][j] = min(mp[i][j],mp[i][k]+mp[k][j]);
            }
        }
    }
}

void run() {
	scanf("%d %d",&n,&m);
    int u,v,w;
    memset(mp,0x3f3f3f3f,sizeof mp);
    for (int i=1;i<=m;i++) {
        scanf("%d %d %d",&u,&v,&w);
        add(u,v,w);
    }
	floyd();
    puts("the distance matrix is:");
    for (int i=1;i<=n;i++) {
        for (int j=1;j<=n;j++) {
            printf("%d ",i==j?0:mp[i][j]);
        }
        puts("");
    }
}

int main() {
    run();
    return 0;
}

/*
4 8
4 1 5
1 4 4
4 3 12
3 4 1
3 1 7
1 3 6
1 2 2
2 3 3
*/

Dijkstra算法

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5+10;
const int inf = 0x3f3f3f3f;

int n,m,k,idx;
int mp[110][110],dis[110],vis[110],pre[110];
map<char,int>a;
map<int,char>b;
char st,ed;


/**
 * 存单向边
 */
void add(int u,int v,int w) {
    mp[u][v] = min(mp[u][v],w);
}

/**
 * 将字母顶点映射为数字编号,并将数字编号映射为字母顶点方便输出路径
 */
int get(char ch) {
    if (!a[ch]) {
        a[ch] = ++idx;
        b[idx] = ch;
    }
    return a[ch]; 
}

/**
 * Dijkstra算法
 */
int dijkstra(int st,int ed) {
    memset(dis,inf,sizeof dis);
    for (int i=1;i<=n;i++) {
        dis[i] = mp[st][i];
        if (dis[i] != inf && i != st) {
            pre[i] = st;
        }
    }
    vis[st] = 1;
    for (int i=1;i<n;i++) {

        /**
         * 寻找未被标记,且当前距离源点最近的点k
         */
        int mi = inf, k;
        for (int j=1;j<=idx;j++) {
            if (!vis[j] && dis[j] < mi) {
                mi = dis[j];
                k = j;
            }
        }

        /**
         * 将k点标记
         */
        vis[k] = 1;

        /**
         * 对k点相邻的边进行松弛操作,即
         * 更新源点到达每个j点的最短距离
         */
        for (int j=1;j<=n;j++) {
            if (dis[j] > dis[k] + mp[k][j]) {
                dis[j] = dis[k] + mp[k][j];
                pre[j] = k;
            }
        }
    }
    return dis[ed];
}

/**
 * 打印最短路径
 */
void getPath(int u) {
    if (get(st) == u) {
        printf("The shortest path is %c",b[u]);
        return;
    }
    getPath(pre[u]);
    printf("->%c",b[u]);
}

void run() {
	scanf("%d %d",&n,&m);
    char u,v;
    int w;
    memset(mp,inf,sizeof mp);
    for (int i=1;i<=n;i++) mp[i][i] = 0;
    for (int i=1;i<=m;i++) {
        scanf(" %c %c %d",&u,&v,&w);
        add(get(u),get(v),w);
    }
    scanf(" %c %c",&st,&ed);
    int res = dijkstra(get(st),get(ed));
    if (res == inf) {
        puts("No path");
        return;
    }
    printf("The shortest distance From %c To %c = %d\n",st,ed,res);
    getPath(get(ed));
}

int main() {
    run();
    return 0;
}

/*
8 11
a b 1
b d 2
c a 2
d c 1
e d 2
d f 8
f e 2
e g 2
g f 3
h f 2
g h 3
a h
*/

4. 分析

F l o y d Floyd Floyd 算法需要遍历三重循环,故总时间复杂度为 O ( n 3 ) O(n^3) O(n3)
D i j k s t r a Dijkstra Dijkstra 算法需要对点集 V V V 进行 S e l e c t Select Select 操作,并对选取到的点 K K K 通过邻接矩阵,遍历与点 K K K 相邻的边进行 S l a c k Slack Slack 操作,故总时间复杂度为 O ( n 2 ) O(n^2) O(n2)

5. 源码

https://github.com/a894985555/Algorithm/tree/main/%E6%9C%80%E7%9F%AD%E8%B7%AF

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值